These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
535 related articles for article (PubMed ID: 21826609)
1. Assessing the tolerance of castor bean to Cd and Pb for phytoremediation purposes. de Souza Costa ET; Guilherme LR; de Melo EE; Ribeiro BT; Dos Santos B InĂ¡cio E; da Costa Severiano E; Faquin V; Hale BA Biol Trace Elem Res; 2012 Jan; 145(1):93-100. PubMed ID: 21826609 [TBL] [Abstract][Full Text] [Related]
2. Accumulation of arsenic and nutrients by castor bean plants grown on an As-enriched nutrient solution. Melo EE; Costa ET; Guilherme LR; Faquin V; Nascimento CW J Hazard Mater; 2009 Aug; 168(1):479-83. PubMed ID: 19304379 [TBL] [Abstract][Full Text] [Related]
3. Growth, tolerance efficiency and phytoremediation potential of Ricinus communis (L.) and Brassica juncea (L.) in salinity and drought affected cadmium contaminated soil. Bauddh K; Singh RP Ecotoxicol Environ Saf; 2012 Nov; 85():13-22. PubMed ID: 22959315 [TBL] [Abstract][Full Text] [Related]
4. Phytoextraction of metals and rhizoremediation of PAHs in co-contaminated soil by co-planting of Sedum alfredii with ryegrass (Lolium perenne) or castor (Ricinus communis). Wang K; Huang H; Zhu Z; Li T; He Z; Yang X; Alva A Int J Phytoremediation; 2013; 15(3):283-98. PubMed ID: 23488013 [TBL] [Abstract][Full Text] [Related]
5. Comparison of chelates for enhancing Ricinus communis L. phytoremediation of Cd and Pb contaminated soil. Zhang H; Guo Q; Yang J; Ma J; Chen G; Chen T; Zhu G; Wang J; Zhang G; Wang X; Shao C Ecotoxicol Environ Saf; 2016 Nov; 133():57-62. PubMed ID: 27414256 [TBL] [Abstract][Full Text] [Related]
6. Use of Energy Crop (Ricinus communis L.) for Phytoextraction of Heavy Metals Assisted with Citric Acid. Zhang H; Chen X; He C; Liang X; Oh K; Liu X; Lei Y Int J Phytoremediation; 2015; 17(7):632-9. PubMed ID: 25976877 [TBL] [Abstract][Full Text] [Related]
7. Tolerance of Ricinus communis L. to Cd and screening of high Cd accumulation varieties for remediation of Cd contaminated soils. Wu S; Shen C; Yang Z; Lin B; Yuan J Int J Phytoremediation; 2016 Nov; 18(11):1148-54. PubMed ID: 27348198 [TBL] [Abstract][Full Text] [Related]
8. Silicate-mediated alleviation of Pb toxicity in banana grown in Pb-contaminated soil. Li L; Zheng C; Fu Y; Wu D; Yang X; Shen H Biol Trace Elem Res; 2012 Jan; 145(1):101-8. PubMed ID: 21826608 [TBL] [Abstract][Full Text] [Related]
9. Interactive effects of Zn, Pb and Cd in barley. Aery NC; Rana DK J Environ Sci Eng; 2007 Jan; 49(1):71-6. PubMed ID: 18472565 [TBL] [Abstract][Full Text] [Related]
10. Cadmium tolerance and its phytoremediation by two oil yielding plants Ricinus communis (L.) and Brassica juncea (L.) from the contaminated soil. Bauddh K; Singh RP Int J Phytoremediation; 2012 Sep; 14(8):772-85. PubMed ID: 22908643 [TBL] [Abstract][Full Text] [Related]
11. Alleviating lead-induced phytotoxicity and enhancing the phytoremediation of castor bean ( Bamagoos AA; Mallhi ZI; El-Esawi MA; Rizwan M; Ahmad A; Hussain A; Alharby HF; Alharbi BM; Ali S Int J Phytoremediation; 2022; 24(9):933-944. PubMed ID: 34634959 [TBL] [Abstract][Full Text] [Related]
12. Phytoaccumulation, interaction, toxicity and remediation of cadmium from Helianthus annuus L. (sunflower). Mani D; Sharma B; Kumar C Bull Environ Contam Toxicol; 2007 Jul; 79(1):71-9. PubMed ID: 17549427 [TBL] [Abstract][Full Text] [Related]
13. Ricinus communis L. (castor bean) as a potential candidate for revegetating industrial waste contaminated sites in peri-urban Greater Hyderabad: remarks on seed oil. Boda RK; Majeti NVP; Suthari S Environ Sci Pollut Res Int; 2017 Aug; 24(24):19955-19964. PubMed ID: 28689290 [TBL] [Abstract][Full Text] [Related]
14. Ability of Agrogyron elongatum to accumulate the single metal of cadmium, copper, nickel and lead and root exudation of organic acids. Yang H; Wong JW; Yang ZM; Zhou LX J Environ Sci (China); 2001 Jul; 13(3):368-75. PubMed ID: 11590773 [TBL] [Abstract][Full Text] [Related]
15. Pb and Cd accumulation and phyto-excretion by salt cedar (Tamarix smyrnensis Bunge). Kadukova J; Manousaki E; Kalogerakis N Int J Phytoremediation; 2008; 10(1):31-46. PubMed ID: 18709930 [TBL] [Abstract][Full Text] [Related]
16. Cadmium tolerance and accumulation in eight potential energy crops. Shi G; Cai Q Biotechnol Adv; 2009; 27(5):555-61. PubMed ID: 19393309 [TBL] [Abstract][Full Text] [Related]
17. Influence of iron plaque on uptake and accumulation of Cd by rice (Oryza sativa L.) seedlings grown in soil. Liu H; Zhang J; Christie P; Zhang F Sci Total Environ; 2008 May; 394(2-3):361-8. PubMed ID: 18325566 [TBL] [Abstract][Full Text] [Related]
18. Influence of Ca/Mg ratio on phytoextraction properties of Salix viminalis I. The effectiveness of Cd, Cu, Pb, and Zn bioaccumulation and plant growth. Mleczek M; Kozlowska M; Kaczmarek Z; Chadzinikolau T; Golinski P Int J Phytoremediation; 2012 Jan; 14(1):75-88. PubMed ID: 22567696 [TBL] [Abstract][Full Text] [Related]
19. A study on the effects of lead, cadmium and phosphorus on the lead and cadmium uptake efficacy of Viola baoshanensis inoculated with arbuscular mycorrhizal fungi. Zhong WL; Li JT; Chen YT; Shu WS; Liao B J Environ Monit; 2012 Sep; 14(9):2497-504. PubMed ID: 22864990 [TBL] [Abstract][Full Text] [Related]
20. Metal phytoremediation by the halophyte Limoniastrum monopetalum (L.) Boiss: two contrasting ecotypes. Manousaki E; Galanaki K; Papadimitriou L; Kalogerakis N Int J Phytoremediation; 2014; 16(7-12):755-69. PubMed ID: 24933883 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]