These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 21826755)

  • 1. Pre-existing soft modes of motion uniquely defined by native contact topology facilitate ligand binding to proteins.
    Meireles L; Gur M; Bakan A; Bahar I
    Protein Sci; 2011 Oct; 20(10):1645-58. PubMed ID: 21826755
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling Binding with Large Conformational Changes: Key Points in Ensemble-Docking Approaches.
    Motta S; Bonati L
    J Chem Inf Model; 2017 Jul; 57(7):1563-1578. PubMed ID: 28616990
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Incorporating backbone flexibility in MedusaDock improves ligand-binding pose prediction in the CSAR2011 docking benchmark.
    Ding F; Dokholyan NV
    J Chem Inf Model; 2013 Aug; 53(8):1871-9. PubMed ID: 23237273
    [TBL] [Abstract][Full Text] [Related]  

  • 4. THz time scale structural rearrangements and binding modes in lysozyme-ligand interactions.
    Woods KN
    J Biol Phys; 2014 Mar; 40(2):121-37. PubMed ID: 24682643
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accounting for global protein deformability during protein-protein and protein-ligand docking.
    May A; Zacharias M
    Biochim Biophys Acta; 2005 Dec; 1754(1-2):225-31. PubMed ID: 16214429
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting large-scale conformational changes in proteins using energy-weighted normal modes.
    Palmer DS; Jensen F
    Proteins; 2011 Oct; 79(10):2778-93. PubMed ID: 21905106
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using normal mode analysis on protein structural models. How far can we go on our predictions?
    Cirauqui Diaz N; Frezza E; Martin J
    Proteins; 2021 May; 89(5):531-543. PubMed ID: 33349977
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid protein-ligand docking using soft modes from molecular dynamics simulations to account for protein deformability: binding of FK506 to FKBP.
    Zacharias M
    Proteins; 2004 Mar; 54(4):759-67. PubMed ID: 14997571
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformational transitions upon ligand binding: holo-structure prediction from apo conformations.
    Seeliger D; de Groot BL
    PLoS Comput Biol; 2010 Jan; 6(1):e1000634. PubMed ID: 20066034
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accounting for induced-fit effects in docking: what is possible and what is not?
    Sotriffer CA
    Curr Top Med Chem; 2011; 11(2):179-91. PubMed ID: 20939789
    [TBL] [Abstract][Full Text] [Related]  

  • 11. FiberDock: Flexible induced-fit backbone refinement in molecular docking.
    Mashiach E; Nussinov R; Wolfson HJ
    Proteins; 2010 May; 78(6):1503-19. PubMed ID: 20077569
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient flexible backbone protein-protein docking for challenging targets.
    Marze NA; Roy Burman SS; Sheffler W; Gray JJ
    Bioinformatics; 2018 Oct; 34(20):3461-3469. PubMed ID: 29718115
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accommodating protein flexibility for structure-based drug design.
    Lin JH
    Curr Top Med Chem; 2011; 11(2):171-8. PubMed ID: 20939792
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling of Protein Structural Flexibility and Large-Scale Dynamics: Coarse-Grained Simulations and Elastic Network Models.
    Kmiecik S; Kouza M; Badaczewska-Dawid AE; Kloczkowski A; Kolinski A
    Int J Mol Sci; 2018 Nov; 19(11):. PubMed ID: 30404229
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring the stability of ligand binding modes to proteins by molecular dynamics simulations.
    Liu K; Watanabe E; Kokubo H
    J Comput Aided Mol Des; 2017 Feb; 31(2):201-211. PubMed ID: 28074360
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Consistent improvement of cross-docking results using binding site ensembles generated with elastic network normal modes.
    Rueda M; Bottegoni G; Abagyan R
    J Chem Inf Model; 2009 Mar; 49(3):716-25. PubMed ID: 19434904
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic Docking of Macrocycles in Bound and Unbound Protein Structures with DynaDock.
    Meixner M; Zachmann M; Metzler S; Scheerer J; Zacharias M; Antes I
    J Chem Inf Model; 2022 Jul; 62(14):3426-3441. PubMed ID: 35796228
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conformational changes and allosteric communications in human serum albumin due to ligand binding.
    Ahalawat N; Murarka RK
    J Biomol Struct Dyn; 2015; 33(10):2192-204. PubMed ID: 25495718
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A method for biomolecular structural recognition and docking allowing conformational flexibility.
    Sandak B; Nussinov R; Wolfson HJ
    J Comput Biol; 1998; 5(4):631-54. PubMed ID: 10072081
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding the challenges of protein flexibility in drug design.
    Antunes DA; Devaurs D; Kavraki LE
    Expert Opin Drug Discov; 2015 Dec; 10(12):1301-13. PubMed ID: 26414598
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.