These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 21826755)

  • 21. Computation of the Protein Conformational Transition Pathway on Ligand Binding by Linear Response-Driven Molecular Dynamics.
    Punia R; Goel G
    J Chem Theory Comput; 2022 May; 18(5):3268-3283. PubMed ID: 35484642
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Protein flexibility and ligand recognition: challenges for molecular modeling.
    Spyrakis F; BidonChanal A; Barril X; Luque FJ
    Curr Top Med Chem; 2011; 11(2):192-210. PubMed ID: 20939788
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Large-scale comparison of protein essential dynamics from molecular dynamics simulations and coarse-grained normal mode analyses.
    Ahmed A; Villinger S; Gohlke H
    Proteins; 2010 Dec; 78(16):3341-52. PubMed ID: 20848551
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Protein-ligand docking accounting for receptor side chain and global flexibility in normal modes: evaluation on kinase inhibitor cross docking.
    May A; Zacharias M
    J Med Chem; 2008 Jun; 51(12):3499-506. PubMed ID: 18517186
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Predicting bioactive conformations and binding modes of macrocycles.
    Anighoro A; de la Vega de León A; Bajorath J
    J Comput Aided Mol Des; 2016 Oct; 30(10):841-849. PubMed ID: 27655412
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fully Flexible Docking via Reaction-Coordinate-Independent Molecular Dynamics Simulations.
    Bertazzo M; Bernetti M; Recanatini M; Masetti M; Cavalli A
    J Chem Inf Model; 2018 Feb; 58(2):490-500. PubMed ID: 29378136
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Global dynamics of proteins: bridging between structure and function.
    Bahar I; Lezon TR; Yang LW; Eyal E
    Annu Rev Biophys; 2010; 39():23-42. PubMed ID: 20192781
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Predicting cryptic ligand binding sites based on normal modes guided conformational sampling.
    Zheng W
    Proteins; 2021 Apr; 89(4):416-426. PubMed ID: 33244830
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Conformational Heterogeneity of Unbound Proteins Enhances Recognition in Protein-Protein Encounters.
    Pallara C; Rueda M; Abagyan R; Fernández-Recio J
    J Chem Theory Comput; 2016 Jul; 12(7):3236-49. PubMed ID: 27294484
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pre- and post-docking sampling of conformational changes using ClustENM and HADDOCK for protein-protein and protein-DNA systems.
    Kurkcuoglu Z; Bonvin AMJJ
    Proteins; 2020 Feb; 88(2):292-306. PubMed ID: 31441121
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Representing receptor flexibility in ligand docking through relevant normal modes.
    Cavasotto CN; Kovacs JA; Abagyan RA
    J Am Chem Soc; 2005 Jul; 127(26):9632-40. PubMed ID: 15984891
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Conformer selection and induced fit in flexible backbone protein-protein docking using computational and NMR ensembles.
    Chaudhury S; Gray JJ
    J Mol Biol; 2008 Sep; 381(4):1068-87. PubMed ID: 18640688
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Higher Accuracy Achieved for Protein-Ligand Binding Pose Prediction by Elastic Network Model-Based Ensemble Docking.
    Wang A; Zhang Y; Chu H; Liao C; Zhang Z; Li G
    J Chem Inf Model; 2020 Jun; 60(6):2939-2950. PubMed ID: 32383873
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Protein-Protein Docking with Large-Scale Backbone Flexibility Using Coarse-Grained Monte-Carlo Simulations.
    Kurcinski M; Kmiecik S; Zalewski M; Kolinski A
    Int J Mol Sci; 2021 Jul; 22(14):. PubMed ID: 34298961
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparisons of Protein Dynamics from Experimental Structure Ensembles, Molecular Dynamics Ensembles, and Coarse-Grained Elastic Network Models.
    Sankar K; Mishra SK; Jernigan RL
    J Phys Chem B; 2018 May; 122(21):5409-5417. PubMed ID: 29376347
    [TBL] [Abstract][Full Text] [Related]  

  • 36. LightDock: a new multi-scale approach to protein-protein docking.
    Jiménez-García B; Roel-Touris J; Romero-Durana M; Vidal M; Jiménez-González D; Fernández-Recio J
    Bioinformatics; 2018 Jan; 34(1):49-55. PubMed ID: 28968719
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Kinematic Flexibility Analysis: Hydrogen Bonding Patterns Impart a Spatial Hierarchy of Protein Motion.
    Budday D; Leyendecker S; van den Bedem H
    J Chem Inf Model; 2018 Oct; 58(10):2108-2122. PubMed ID: 30240209
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The 6th Computational Structural Bioinformatics Workshop.
    He J; Shehu A; Haspel N; Chen B
    BMC Struct Biol; 2013; 13 Suppl 1(Suppl 1):I1. PubMed ID: 24564893
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Homology modeling, molecular docking, and molecular dynamics simulations elucidated α-fetoprotein binding modes.
    Shen J; Zhang W; Fang H; Perkins R; Tong W; Hong H
    BMC Bioinformatics; 2013; 14 Suppl 14(Suppl 14):S6. PubMed ID: 24266910
    [TBL] [Abstract][Full Text] [Related]  

  • 40. BP-Dock: a flexible docking scheme for exploring protein-ligand interactions based on unbound structures.
    Bolia A; Gerek ZN; Ozkan SB
    J Chem Inf Model; 2014 Mar; 54(3):913-25. PubMed ID: 24380381
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.