These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 21826792)

  • 1. Detection of nonfluorescent molecules using differential interference contrast thermal lens microscope for extended nanochannel chromatography.
    Shimizu H; Mawatari K; Kitamori T
    J Sep Sci; 2011 Oct; 34(20):2920-4. PubMed ID: 21826792
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensitive determination of concentration of nonfluorescent species in an extended-nano channel by differential interference contrast thermal lens microscope.
    Shimizu H; Mawatari K; Kitamori T
    Anal Chem; 2010 Sep; 82(17):7479-84. PubMed ID: 20698489
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of zeptomole quantities of nonfluorescent molecules in a 10(1) nm nanochannel by thermal lens microscopy.
    Le TH; Mawatari K; Shimizu H; Kitamori T
    Analyst; 2014 Jun; 139(11):2721-5. PubMed ID: 24759977
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a differential interference contrast thermal lens microscope for sensitive individual nanoparticle detection in liquid.
    Shimizu H; Mawatari K; Kitamori T
    Anal Chem; 2009 Dec; 81(23):9802-6. PubMed ID: 19894703
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Femtoliter-scale separation and sensitive detection of nonfluorescent samples in an extended-nano fluidic device.
    Shimizu H; Mawatari K; Kitamori T
    Analyst; 2014 May; 139(9):2154-7. PubMed ID: 24647438
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrasensitive detection of nonlabelled bovine serum albumin using photothermal optical phase shift detection with UV excitation.
    Shimizu H; Takeda S; Mawatari K; Kitamori T
    Analyst; 2020 Apr; 145(7):2580-2585. PubMed ID: 32195506
    [TBL] [Abstract][Full Text] [Related]  

  • 7. UV excitation thermal lens microscope for sensitive and nonlabeled detection of nonfluorescent molecules.
    Hiki S; Mawatari K; Hibara A; Tokeshi M; Kitamori T
    Anal Chem; 2006 Apr; 78(8):2859-63. PubMed ID: 16615803
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toward million-fold sensitivity enhancement by sweeping in capillary electrophoresis combined with thermal lens microscopic detection using an interface chip.
    Kitagawa F; Tsuneka T; Akimoto Y; Sueyoshi K; Uchiyama K; Hattori A; Otsuka K
    J Chromatogr A; 2006 Feb; 1106(1-2):36-42. PubMed ID: 16443450
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Circular dichroism thermal lens microscope for sensitive chiral analysis on microchip.
    Yamauchi M; Mawatari K; Hibara A; Tokeshi M; Kitamori T
    Anal Chem; 2006 Apr; 78(8):2646-50. PubMed ID: 16615775
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wavelength-dependent differential interference contrast microscopy: multiplexing detection using nonfluorescent nanoparticles.
    Luo Y; Sun W; Gu Y; Wang G; Fang N
    Anal Chem; 2010 Aug; 82(15):6675-9. PubMed ID: 20614872
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal lens microscopy as a detector in microdevices.
    Cassano CL; Mawatari K; Kitamori T; Fan ZH
    Electrophoresis; 2014 Aug; 35(16):2279-91. PubMed ID: 24435958
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanochannel chromatography and photothermal optical diffraction: Femtoliter sample separation and label-free zeptomole detection.
    Tsuyama Y; Morikawa K; Mawatari K
    J Chromatogr A; 2020 Aug; 1624():461265. PubMed ID: 32540055
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly efficient and ultra-small volume separation by pressure-driven liquid chromatography in extended nanochannels.
    Ishibashi R; Mawatari K; Kitamori T
    Small; 2012 Apr; 8(8):1237-42. PubMed ID: 22354868
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal lens detection device.
    Mawatari K; Ohashi T; Ebata T; Tokeshi M; Kitamori T
    Lab Chip; 2011 Sep; 11(17):2990-3. PubMed ID: 21738939
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical analysis of thermal lens effect for sensitive detection on microchips.
    Anraku R; Mawatari K; Tokeshi M; Nara M; Asai T; Hattori A; Kitamori T
    Electrophoresis; 2008 May; 29(9):1895-901. PubMed ID: 18393340
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Doubling the resolution of spatial-light-modulator-based differential interference contrast microscopy by structured illumination.
    Chen J; Lv X; Zeng S
    Opt Lett; 2013 Sep; 38(17):3219-22. PubMed ID: 23988918
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonfluorescent Molecule Detection in 10
    Tsuyama Y; Mawatari K
    Anal Chem; 2019 Aug; 91(15):9741-9746. PubMed ID: 31335120
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Absorption spectra of dye solutions measured using a white light thermal lens spectrophotometer.
    Marcano O A; Ojeda J; Melikechi N
    Appl Spectrosc; 2006 May; 60(5):560-3. PubMed ID: 16756708
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantification of etoposide and etoposide phosphate in human plasma by micellar electrokinetic chromatography and near-field thermal lens detection.
    Ragozina NY; Pütz M; Heissler S; Faubel W; Pyell U
    Anal Chem; 2004 Jul; 76(13):3804-9. PubMed ID: 15228358
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential interference contrast-photothermal microscopy in nanospace: impacts of systematic parameters.
    Liu M
    J Microsc; 2018 Mar; 269(3):221-229. PubMed ID: 28815586
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.