BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 21827146)

  • 1. Conformationally restricted calix[8]arenes substituted at all methylene bridges.
    Kogan K; Biali SE
    J Org Chem; 2011 Sep; 76(17):7240-4. PubMed ID: 21827146
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functionalization of the methylene bridges of the calix[6]arene scaffold.
    Kogan K; Columbus I; Biali SE
    J Org Chem; 2008 Sep; 73(18):7327-35. PubMed ID: 18707171
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energy and geometry of cooperative hydrogen bonds in p-substituted calix[n]- and thiacalix[n]arenes: a quantum-chemical approach.
    Novikov AN; Shapiro YE
    J Phys Chem A; 2012 Jan; 116(1):546-59. PubMed ID: 22129034
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Threading of Conformationally Stable Calix[6]arene Wheels Substituted at the Methylene Bridges.
    Tranfić Bakić M; Iuliano V; Talotta C; Geremia S; Hickey N; Spinella A; De Rosa M; Soriente A; Gaeta C; Neri P
    J Org Chem; 2019 Sep; 84(18):11922-11927. PubMed ID: 31418261
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformational analysis of p-tert-butylcalix[4]arene derivatives with trans-alkyl substituents on opposite methylene bridges: destabilization of the cone form by axial alkyl substituents.
    Simaan S; Biali SE
    J Org Chem; 2003 Oct; 68(20):7685-92. PubMed ID: 14510543
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Incorporation of substituents at the methylene linkages of the Calix[5]arene skeleton.
    Kogan K; Biali SE
    J Org Chem; 2009 Sep; 74(18):7172-5. PubMed ID: 19705808
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The nucleophilic substitution route. A facile method for the fourfold functionalization of the methylene bridges of calix[4]arene.
    Columbus I; Biali SE
    Org Lett; 2007 Jul; 9(15):2927-9. PubMed ID: 17580894
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Incorporation of three or two distal double bonds at the methylene bridges of the calix[4]arene scaffold.
    Shalev O; Biali SE
    J Org Chem; 2014 Sep; 79(18):8584-91. PubMed ID: 25171092
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functionalization of the methylene groups of p-tert-butylcalix[4]arene: S-C, N-C, and C-C bond formation.
    Simaan S; Agbaria K; Biali SE
    J Org Chem; 2002 Aug; 67(17):6136-42. PubMed ID: 12182654
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Lithiation/Oxygenation Approach to Calix[6]arenes Selectively Functionalized at a Pair of Opposite Methylene Bridges.
    Shalev O; Biali SE
    Org Lett; 2018 Apr; 20(8):2324-2327. PubMed ID: 29638134
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calix[4]arenes with two different chemical modifications at the bridges.
    Kuno L; Biali SE
    J Org Chem; 2011 May; 76(10):3664-75. PubMed ID: 21480645
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and reactivity of calix[4]arene-supported group 4 imido complexes.
    Dubberley SR; Friedrich A; Willman DA; Mountford P; Radius U
    Chemistry; 2003 Aug; 9(15):3634-54. PubMed ID: 12898691
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of p-tert-butylcalix[4]arene derivatives with trans-alkyl substituents on opposite methylene bridges.
    Simaan S; Biali SE
    J Org Chem; 2003 May; 68(9):3634-9. PubMed ID: 12713372
    [TBL] [Abstract][Full Text] [Related]  

  • 14. C-Me Bond Formation at All Methylene Bridges of the Calix[4]arene Scaffold.
    Shalev O; Biali SE
    Org Lett; 2018 Jun; 20(11):3390-3393. PubMed ID: 29790764
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energies of charge transfer and supramolecular interactions of some mono O-substituted calix[6]arenes with [60]fullerene by absorption spectrometric method.
    Bhattacharya S; Nayak SK; Semwal A; Banerjee M
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Feb; 61(4):595-606. PubMed ID: 15649789
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis, structures, and conformational characteristics of calixarene monoanions and dianions.
    Hanna TA; Liu L; Angeles-Boza AM; Kou X; Gutsche CD; Ejsmont K; Watson WH; Zakharov LN; Incarvito CD; Rheingold AL
    J Am Chem Soc; 2003 May; 125(20):6228-38. PubMed ID: 12785855
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Restricted rotation of tert-butyl groups in sterically crowded methylene-functionalized calix[4]arenes.
    Kuno L; Biali SE
    Org Lett; 2009 Aug; 11(16):3662-5. PubMed ID: 19639951
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and crystal structure of uranium(IV) complexes with calix[n]arenes (n = 4, 6 and 8): mononuclear, polynuclear and 1D polymeric species.
    Salmon L; Thuéry P; Ephritikhine M
    Dalton Trans; 2006 Aug; (30):3629-37. PubMed ID: 16865174
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The solubilization of the poorly water soluble drug nifedipine by water soluble 4-sulphonic calix[n]arenes.
    Yang W; de Villiers MM
    Eur J Pharm Biopharm; 2004 Nov; 58(3):629-36. PubMed ID: 15451538
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Supramolecular incorporation of fullerenes on gold surfaces: comparison of C60 incorporation by self-assembled monolayers of different calix[n]arene (n = 4, 6, 8) derivatives.
    Zhang S; Echegoyen L
    J Org Chem; 2005 Nov; 70(24):9874-81. PubMed ID: 16292818
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.