These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 21827172)
1. GSH-mediated S-transarylation of a quinone glyceraldehyde-3-phosphate dehydrogenase conjugate. Miura T; Kakehashi H; Shinkai Y; Egara Y; Hirose R; Cho AK; Kumagai Y Chem Res Toxicol; 2011 Nov; 24(11):1836-44. PubMed ID: 21827172 [TBL] [Abstract][Full Text] [Related]
2. Glutathione-mediated reversibility of covalent modification of ubiquitin carboxyl-terminal hydrolase L1 by 1,2-naphthoquinone through Cys152, but not Lys4. Toyama T; Shinkai Y; Yazawa A; Kakehashi H; Kaji T; Kumagai Y Chem Biol Interact; 2014 May; 214():41-8. PubMed ID: 24582816 [TBL] [Abstract][Full Text] [Related]
3. Glyceraldehyde-3-phosphate dehydrogenase as a quinone reductase in the suppression of 1,2-naphthoquinone protein adduct formation. Miura T; Shinkai Y; Hirose R; Iwamoto N; Cho AK; Kumagai Y Free Radic Biol Med; 2011 Dec; 51(11):2082-9. PubMed ID: 21963991 [TBL] [Abstract][Full Text] [Related]
4. Interaction of Keap1 modified by 2-tert-butyl-1,4-benzoquinone with GSH: evidence for S-transarylation. Abiko Y; Kumagai Y Chem Res Toxicol; 2013 Jul; 26(7):1080-7. PubMed ID: 23718696 [TBL] [Abstract][Full Text] [Related]
5. Studies on the mechanism of oxidative modification of human glyceraldehyde-3-phosphate dehydrogenase by glutathione: catalysis by glutaredoxin. Lind C; Gerdes R; Schuppe-Koistinen I; Cotgreave IA Biochem Biophys Res Commun; 1998 Jun; 247(2):481-6. PubMed ID: 9642155 [TBL] [Abstract][Full Text] [Related]
6. The glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase works as an arsenate reductase in human red blood cells and rat liver cytosol. Gregus Z; Németi B Toxicol Sci; 2005 Jun; 85(2):859-69. PubMed ID: 15788719 [TBL] [Abstract][Full Text] [Related]
7. Reactive Sulfur Species-Mediated Activation of the Keap1-Nrf2 Pathway by 1,2-Naphthoquinone through Sulfenic Acids Formation under Oxidative Stress. Shinkai Y; Abiko Y; Ida T; Miura T; Kakehashi H; Ishii I; Nishida M; Sawa T; Akaike T; Kumagai Y Chem Res Toxicol; 2015 May; 28(5):838-47. PubMed ID: 25807370 [TBL] [Abstract][Full Text] [Related]
9. Oxidative modifications of glyceraldehyde-3-phosphate dehydrogenase play a key role in its multiple cellular functions. Hwang NR; Yim SH; Kim YM; Jeong J; Song EJ; Lee Y; Lee JH; Choi S; Lee KJ Biochem J; 2009 Sep; 423(2):253-64. PubMed ID: 19650766 [TBL] [Abstract][Full Text] [Related]
10. Mapping of the interaction site of CP12 with glyceraldehyde-3-phosphate dehydrogenase from Chlamydomonas reinhardtii. Functional consequences for glyceraldehyde-3-phosphate dehydrogenase. Lebreton S; Andreescu S; Graciet E; Gontero B FEBS J; 2006 Jul; 273(14):3358-69. PubMed ID: 16803460 [TBL] [Abstract][Full Text] [Related]
11. Protein thiol modification of glyceraldehyde-3-phosphate dehydrogenase as a target for nitric oxide signaling. Brüne B; Lapetina EG Genet Eng (N Y); 1995; 17():149-64. PubMed ID: 7540026 [TBL] [Abstract][Full Text] [Related]
12. Reactions of glyceraldehyde 3-phosphate dehydrogenase sulfhydryl groups with bis-electrophiles produce DNA-protein cross-links but not mutations. Loecken EM; Guengerich FP Chem Res Toxicol; 2008 Feb; 21(2):453-8. PubMed ID: 18163542 [TBL] [Abstract][Full Text] [Related]
13. The thioredoxin-independent isoform of chloroplastic glyceraldehyde-3-phosphate dehydrogenase is selectively regulated by glutathionylation. Zaffagnini M; Michelet L; Marchand C; Sparla F; Decottignies P; Le Maréchal P; Miginiac-Maslow M; Noctor G; Trost P; Lemaire SD FEBS J; 2007 Jan; 274(1):212-26. PubMed ID: 17140414 [TBL] [Abstract][Full Text] [Related]
14. Glyceraldehyde-3-phosphate dehydrogenase inactivation by peroxynitrite. Souza JM; Radi R Arch Biochem Biophys; 1998 Dec; 360(2):187-94. PubMed ID: 9851830 [TBL] [Abstract][Full Text] [Related]
15. S-glutathionylation of glyceraldehyde-3-phosphate dehydrogenase induces formation of C150-C154 intrasubunit disulfide bond in the active site of the enzyme. Barinova KV; Serebryakova MV; Muronetz VI; Schmalhausen EV Biochim Biophys Acta Gen Subj; 2017 Dec; 1861(12):3167-3177. PubMed ID: 28935607 [TBL] [Abstract][Full Text] [Related]
17. Effect of H(2)O(2)on human lens epithelial cells and the possible mechanism for oxidative damage repair by thioltransferase. Xing KY; Lou MF Exp Eye Res; 2002 Jan; 74(1):113-22. PubMed ID: 11878824 [TBL] [Abstract][Full Text] [Related]
18. Diamide-induced alterations of intracellular thiol status and the regulation of glucose metabolism in the developing rat conceptus in vitro. Hiranruengchok R; Harris C Teratology; 1995 Oct; 52(4):205-14. PubMed ID: 8838290 [TBL] [Abstract][Full Text] [Related]
19. Protein S-thiolation targets glycolysis and protein synthesis in response to oxidative stress in the yeast Saccharomyces cerevisiae. Shenton D; Grant CM Biochem J; 2003 Sep; 374(Pt 2):513-9. PubMed ID: 12755685 [TBL] [Abstract][Full Text] [Related]
20. Glyceraldehyde-3-phosphate dehydrogenase aggregation inhibitor peptide: A potential therapeutic strategy against oxidative stress-induced cell death. Itakura M; Nakajima H; Semi Y; Higashida S; Azuma YT; Takeuchi T Biochem Biophys Res Commun; 2015 Nov; 467(2):373-6. PubMed ID: 26431872 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]