These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Effects of pulsed ultrasound on the adsorption of n-alkyl anionic surfactants at the gas/solution interface of cavitation bubbles. Yang L; Sostaric JZ; Rathman JF; Kuppusamy P; Weavers LK J Phys Chem B; 2007 Feb; 111(6):1361-7. PubMed ID: 17249713 [TBL] [Abstract][Full Text] [Related]
4. Upflow anaerobic sludge blanket reactor--a review. Bal AS; Dhagat NN Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675 [TBL] [Abstract][Full Text] [Related]
5. Theoretical estimation of the temperature and pressure within collapsing acoustical bubbles. Merouani S; Hamdaoui O; Rezgui Y; Guemini M Ultrason Sonochem; 2014 Jan; 21(1):53-9. PubMed ID: 23769748 [TBL] [Abstract][Full Text] [Related]
6. Determination of temperatures within acoustically generated bubbles in aqueous solutions at different ultrasound frequencies. Ciawi E; Rae J; Ashokkumar M; Grieser F J Phys Chem B; 2006 Jul; 110(27):13656-60. PubMed ID: 16821894 [TBL] [Abstract][Full Text] [Related]
7. New interpretation of the effects of argon-saturating gas toward sonochemical reactions. Merouani S; Ferkous H; Hamdaoui O; Rezgui Y; Guemini M Ultrason Sonochem; 2015 Mar; 23():37-45. PubMed ID: 25304684 [TBL] [Abstract][Full Text] [Related]
8. Investigating the role of gas bubble formation and entrapment in contaminated aquifers: Reactive transport modelling. Amos RT; Ulrich Mayer K J Contam Hydrol; 2006 Sep; 87(1-2):123-54. PubMed ID: 16797104 [TBL] [Abstract][Full Text] [Related]
9. Influence of dissolved gases on sonochemistry and sonoluminescence in a flow reactor. Gielen B; Marchal S; Jordens J; Thomassen LC; Braeken L; Van Gerven T Ultrason Sonochem; 2016 Jul; 31():463-72. PubMed ID: 26964973 [TBL] [Abstract][Full Text] [Related]
10. Quantification of ultrasound-induced chain scission in PdII-phosphine coordination polymers. Paulusse JM; Huijbers JP; Sijbesma RP Chemistry; 2006 Jun; 12(18):4928-34. PubMed ID: 16586526 [TBL] [Abstract][Full Text] [Related]
11. Effect of ultrasound frequency on pulsed sonolytic degradation of octylbenzene sulfonic acid. Yang L; Sostaric JZ; Rathman JF; Weavers LK J Phys Chem B; 2008 Jan; 112(3):852-8. PubMed ID: 18085771 [TBL] [Abstract][Full Text] [Related]
13. Effect of resonance frequency, power input, and saturation gas type on the oxidation efficiency of an ultrasound horn. Rooze J; Rebrov EV; Schouten JC; Keurentjes JT Ultrason Sonochem; 2011 Jan; 18(1):209-15. PubMed ID: 20573535 [TBL] [Abstract][Full Text] [Related]
14. Free-radical generation from collapsing microbubbles in the absence of a dynamic stimulus. Takahashi M; Chiba K; Li P J Phys Chem B; 2007 Feb; 111(6):1343-7. PubMed ID: 17253740 [TBL] [Abstract][Full Text] [Related]
15. Formation of a Criegee intermediate in the low-temperature oxidation of dimethyl sulfoxide. Asatryan R; Bozzelli JW Phys Chem Chem Phys; 2008 Apr; 10(13):1769-80. PubMed ID: 18350182 [TBL] [Abstract][Full Text] [Related]
16. Acoustic bubble sizes, coalescence, and sonochemical activity in aqueous electrolyte solutions saturated with different gases. Brotchie A; Statham T; Zhou M; Dharmarathne L; Grieser F; Ashokkumar M Langmuir; 2010 Aug; 26(15):12690-5. PubMed ID: 20593787 [TBL] [Abstract][Full Text] [Related]
17. Spatial distribution of acoustic cavitation bubbles at different ultrasound frequencies. Ashokkumar M; Lee J; Iida Y; Yasui K; Kozuka T; Tuziuti T; Towata A Chemphyschem; 2010 Jun; 11(8):1680-4. PubMed ID: 20301178 [TBL] [Abstract][Full Text] [Related]
18. Optimum bubble temperature for the sonochemical production of oxidants. Yasui K; Tuziuti T; Iida Y Ultrasonics; 2004 Apr; 42(1-9):579-84. PubMed ID: 15047350 [TBL] [Abstract][Full Text] [Related]
19. Simulations on the thermal decomposition of a poly(dimethylsiloxane) polymer using the ReaxFF reactive force field. Chenoweth K; Cheung S; van Duin AC; Goddard WA; Kober EM J Am Chem Soc; 2005 May; 127(19):7192-202. PubMed ID: 15884961 [TBL] [Abstract][Full Text] [Related]
20. The mechanism of cavitation-induced scission of single-walled carbon nanotubes. Hennrich F; Krupke R; Arnold K; Rojas Stütz JA; Lebedkin S; Koch T; Schimmel T; Kappes MM J Phys Chem B; 2007 Mar; 111(8):1932-7. PubMed ID: 17274643 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]