These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 21827360)
1. Preparation and evaluation of PLGA microparticles as carrier for the pulmonary delivery of rhIL-2 : I. Effects of some formulation parameters on microparticle characteristics. Devrim B; Bozkir A; Canefe K J Microencapsul; 2011; 28(6):582-94. PubMed ID: 21827360 [TBL] [Abstract][Full Text] [Related]
2. Preparation and evaluation of poly(lactic-co-glycolic acid) microparticles as a carrier for pulmonary delivery of recombinant human interleukin-2: II. In vitro studies on aerodynamic properties of dry powder inhaler formulations. Devrim B; Bozkır A; Canefe K Drug Dev Ind Pharm; 2011 Nov; 37(11):1376-86. PubMed ID: 21548727 [TBL] [Abstract][Full Text] [Related]
3. Issues in long-term protein delivery using biodegradable microparticles. Ye M; Kim S; Park K J Control Release; 2010 Sep; 146(2):241-60. PubMed ID: 20493221 [TBL] [Abstract][Full Text] [Related]
4. Enhanced properties of discrete pulmonary deoxyribonuclease I (DNaseI) loaded PLGA nanoparticles during encapsulation and activity determination. Osman R; Kan PL; Awad G; Mortada N; El-Shamy AE; Alpar O Int J Pharm; 2011 Apr; 408(1-2):257-65. PubMed ID: 21335080 [TBL] [Abstract][Full Text] [Related]
5. Nano/micro technologies for delivering macromolecular therapeutics using poly(D,L-lactide-co-glycolide) and its derivatives. Mundargi RC; Babu VR; Rangaswamy V; Patel P; Aminabhavi TM J Control Release; 2008 Feb; 125(3):193-209. PubMed ID: 18083265 [TBL] [Abstract][Full Text] [Related]
6. Development of highly porous large PLGA microparticles for pulmonary drug delivery. Yang Y; Bajaj N; Xu P; Ohn K; Tsifansky MD; Yeo Y Biomaterials; 2009 Apr; 30(10):1947-53. PubMed ID: 19135245 [TBL] [Abstract][Full Text] [Related]
7. Influence of microencapsulation method and peptide loading on formulation of poly(lactide-co-glycolide) insulin nanoparticles. Kumar PS; Ramakrishna S; Saini TR; Diwan PV Pharmazie; 2006 Jul; 61(7):613-7. PubMed ID: 16889069 [TBL] [Abstract][Full Text] [Related]
9. Topical delivery of urea encapsulated in biodegradable PLGA microparticles: O/W and W/O creams. Haddadi A; Aboofazeli R; Erfan M; Farboud ES J Microencapsul; 2008 Sep; 25(6):379-86. PubMed ID: 18465299 [TBL] [Abstract][Full Text] [Related]
10. The effect of formulation variables on the characteristics of insulin-loaded poly(lactic-co-glycolic acid) microspheres prepared by a single phase oil in oil solvent evaporation method. Hamishehkar H; Emami J; Najafabadi AR; Gilani K; Minaiyan M; Mahdavi H; Nokhodchi A Colloids Surf B Biointerfaces; 2009 Nov; 74(1):340-9. PubMed ID: 19717287 [TBL] [Abstract][Full Text] [Related]
11. Preparation of budesonide-loaded porous PLGA microparticles and their therapeutic efficacy in a murine asthma model. Oh YJ; Lee J; Seo JY; Rhim T; Kim SH; Yoon HJ; Lee KY J Control Release; 2011 Feb; 150(1):56-62. PubMed ID: 21070826 [TBL] [Abstract][Full Text] [Related]
12. A modified double-emulsion method for the preparation of daunorubicin-loaded polymeric nanoparticle with enhanced in vitro anti-tumor activity. Liu J; Qiu Z; Wang S; Zhou L; Zhang S Biomed Mater; 2010 Dec; 5(6):065002. PubMed ID: 20924138 [TBL] [Abstract][Full Text] [Related]
13. Effect of PLGA as a polymeric emulsifier on preparation of hydrophilic protein-loaded solid lipid nanoparticles. Xie S; Wang S; Zhao B; Han C; Wang M; Zhou W Colloids Surf B Biointerfaces; 2008 Dec; 67(2):199-204. PubMed ID: 18829272 [TBL] [Abstract][Full Text] [Related]
14. Preparation and in vitro characterization of vascular endothelial growth factor (VEGF)-loaded poly(D,L-lactic-co-glycolic acid) microspheres using a double emulsion/solvent evaporation technique. Karal-Yılmaz O; Serhatlı M; Baysal K; Baysal BM J Microencapsul; 2011; 28(1):46-54. PubMed ID: 21171816 [TBL] [Abstract][Full Text] [Related]
15. G-CSF loaded biodegradable PLGA nanoparticles prepared by a single oil-in-water emulsion method. Choi SH; Park TG Int J Pharm; 2006 Mar; 311(1-2):223-8. PubMed ID: 16423477 [TBL] [Abstract][Full Text] [Related]
16. Unintended potential impact of perfect sink conditions on PLGA degradation in microparticles. Klose D; Delplace C; Siepmann J Int J Pharm; 2011 Feb; 404(1-2):75-82. PubMed ID: 21056644 [TBL] [Abstract][Full Text] [Related]
17. Water-free microencapsulation of proteins within PLGA microparticles by spray drying using PEG-assisted protein solubilization technique in organic solvent. Mok H; Park TG Eur J Pharm Biopharm; 2008 Sep; 70(1):137-44. PubMed ID: 18515053 [TBL] [Abstract][Full Text] [Related]
18. Sustained release of VEGF through PLGA microparticles improves vasculogenesis and tissue remodeling in an acute myocardial ischemia-reperfusion model. Formiga FR; Pelacho B; Garbayo E; Abizanda G; Gavira JJ; Simon-Yarza T; Mazo M; Tamayo E; Jauquicoa C; Ortiz-de-Solorzano C; Prósper F; Blanco-Prieto MJ J Control Release; 2010 Oct; 147(1):30-7. PubMed ID: 20643169 [TBL] [Abstract][Full Text] [Related]
19. Thermal behavior and stability of biodegradable spray-dried microparticles containing triamcinolone. da Silva AA; de Matos JR; Formariz TP; Rossanezi G; Scarpa MV; do Egito ES; de Oliveira AG Int J Pharm; 2009 Feb; 368(1-2):45-55. PubMed ID: 18992313 [TBL] [Abstract][Full Text] [Related]
20. Influence of post-emulsification drying processes on the microencapsulation of human serum albumin. Lane ME; Brennan FS; Corrigan OI Int J Pharm; 2006 Jan; 307(1):16-22. PubMed ID: 16274944 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]