BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 21827423)

  • 1. Molecular determinants of enzyme cold adaptation: comparative structural and computational studies of cold- and warm-adapted enzymes.
    Papaleo E; Tiberti M; Invernizzi G; Pasi M; Ranzani V
    Curr Protein Pept Sci; 2011 Nov; 12(7):657-83. PubMed ID: 21827423
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cold-adapted enzymes.
    Siddiqui KS; Cavicchioli R
    Annu Rev Biochem; 2006; 75():403-33. PubMed ID: 16756497
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Near native-state conformational landscape of psychrophilic and mesophilic enzymes: probing the folding funnel model.
    Mereghetti P; Riccardi L; Brandsdal BO; Fantucci P; De Gioia L; Papaleo E
    J Phys Chem B; 2010 Jun; 114(22):7609-19. PubMed ID: 20518574
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cold adapted enzymes.
    Smalås AO; Leiros HK; Os V; Willassen NP
    Biotechnol Annu Rev; 2000; 6():1-57. PubMed ID: 11193291
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative structural analysis of psychrophilic and meso- and thermophilic enzymes.
    Gianese G; Bossa F; Pascarella S
    Proteins; 2002 May; 47(2):236-49. PubMed ID: 11933070
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic properties of extremophilic subtilisin-like serine-proteases.
    Tiberti M; Papaleo E
    J Struct Biol; 2011 Apr; 174(1):69-83. PubMed ID: 21276854
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cold adaptation of zinc metalloproteases in the thermolysin family from deep sea and arctic sea ice bacteria revealed by catalytic and structural properties and molecular dynamics: new insights into relationship between conformational flexibility and hydrogen bonding.
    Xie BB; Bian F; Chen XL; He HL; Guo J; Gao X; Zeng YX; Chen B; Zhou BC; Zhang YZ
    J Biol Chem; 2009 Apr; 284(14):9257-69. PubMed ID: 19181663
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional determinants of temperature adaptation in enzymes of cold- versus warm-adapted mussels (Genus Mytilus).
    Lockwood BL; Somero GN
    Mol Biol Evol; 2012 Oct; 29(10):3061-70. PubMed ID: 22491035
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring the Cold-Adaptation Mechanism of Serine Hydroxymethyltransferase by Comparative Molecular Dynamics Simulations.
    Zhang ZB; Xia YL; Dong GH; Fu YX; Liu SQ
    Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33670090
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative void-volume analysis of psychrophilic and mesophilic enzymes: Structural bioinformatics of psychrophilic enzymes reveals sources of core flexibility.
    Paredes DI; Watters K; Pitman DJ; Bystroff C; Dordick JS
    BMC Struct Biol; 2011 Oct; 11():42. PubMed ID: 22013889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure of a subtilisin-like serine proteinase from a psychrotrophic Vibrio species reveals structural aspects of cold adaptation.
    Arnórsdóttir J; Kristjánsson MM; Ficner R
    FEBS J; 2005 Feb; 272(3):832-45. PubMed ID: 15670163
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular basis of cold adaptation.
    D'Amico S; Claverie P; Collins T; Georlette D; Gratia E; Hoyoux A; Meuwis MA; Feller G; Gerday C
    Philos Trans R Soc Lond B Biol Sci; 2002 Jul; 357(1423):917-25. PubMed ID: 12171655
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Psychrophilic enzymes: strategies for cold-adaptation.
    Collins T; Feller G
    Essays Biochem; 2023 Aug; 67(4):701-713. PubMed ID: 37021674
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of electrostatics as a strategy for cold-adaptation: a case study of cold- and warm-active elastases.
    Papaleo E; Olufsen M; De Gioia L; Brandsdal BO
    J Mol Graph Model; 2007 Jul; 26(1):93-103. PubMed ID: 17084098
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the first eukaryotic cold-adapted patatin-like phospholipase from the psychrophilic Euplotes focardii: Identification of putative determinants of thermal-adaptation by comparison with the homologous protein from the mesophilic Euplotes crassus.
    Yang G; De Santi C; de Pascale D; Pucciarelli S; Pucciarelli S; Miceli C
    Biochimie; 2013 Sep; 95(9):1795-806. PubMed ID: 23796575
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cold-active enzymes studied by comparative molecular dynamics simulation.
    Spiwok V; Lipovová P; Skálová T; Dusková J; Dohnálek J; Hasek J; Russell NJ; Králová B
    J Mol Model; 2007 Apr; 13(4):485-97. PubMed ID: 17235516
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural adaptation to low temperatures--analysis of the subunit interface of oligomeric psychrophilic enzymes.
    Tronelli D; Maugini E; Bossa F; Pascarella S
    FEBS J; 2007 Sep; 274(17):4595-608. PubMed ID: 17697122
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Psychrophilic enzymes: molecular basis of cold adaptation.
    Feller G; Gerday C
    Cell Mol Life Sci; 1997 Oct; 53(10):830-41. PubMed ID: 9413552
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational Analysis of Thermal Adaptation in Extremophilic Chitinases: The Achilles' Heel in Protein Structure and Industrial Utilization.
    Ang DL; Hoque MZ; Hossain MA; Guerriero G; Berni R; Hausman JF; Bokhari SA; Bridge WJ; Siddiqui KS
    Molecules; 2021 Jan; 26(3):. PubMed ID: 33572971
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flexibility and enzymatic cold-adaptation: a comparative molecular dynamics investigation of the elastase family.
    Papaleo E; Riccardi L; Villa C; Fantucci P; De Gioia L
    Biochim Biophys Acta; 2006 Aug; 1764(8):1397-406. PubMed ID: 16920043
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.