These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 21827426)
1. Systematic annotation and bioinformatics analyses of large-scale Oryza sativa proteome. Liu L; Bai L; Luo C; Huang D; Chen M Curr Protein Pept Sci; 2011 Nov; 12(7):621-30. PubMed ID: 21827426 [TBL] [Abstract][Full Text] [Related]
2. Systematic secretome analyses of rice leaf and seed callus suspension-cultured cells: workflow development and establishment of high-density two-dimensional gel reference maps. Jung YH; Jeong SH; Kim SH; Singh R; Lee JE; Cho YS; Agrawal GK; Rakwal R; Jwa NS J Proteome Res; 2008 Dec; 7(12):5187-210. PubMed ID: 18986194 [TBL] [Abstract][Full Text] [Related]
3. Rice proteome database: a step toward functional analysis of the rice genome. Komatsu S Plant Mol Biol; 2005 Sep; 59(1):179-90. PubMed ID: 16217611 [TBL] [Abstract][Full Text] [Related]
4. Rice Proteome Database based on two-dimensional polyacrylamide gel electrophoresis: its status in 2003. Komatsu S; Kojima K; Suzuki K; Ozaki K; Higo K Nucleic Acids Res; 2004 Jan; 32(Database issue):D388-92. PubMed ID: 14681440 [TBL] [Abstract][Full Text] [Related]
5. Rice proteome analysis: a step toward functional analysis of the rice genome. Komatsu S; Tanaka N Proteomics; 2005 Mar; 5(4):938-49. PubMed ID: 15627974 [TBL] [Abstract][Full Text] [Related]
6. 2D-DIGE-based proteome expression changes in leaves of rice seedlings exposed to low-level gamma radiation at Iitate village, Fukushima. Hayashi G; Moro CF; Rohila JS; Shibato J; Kubo A; Imanaka T; Kimura S; Ozawa S; Fukutani S; Endo S; Ichikawa K; Agrawal GK; Shioda S; Hori M; Fukumoto M; Rakwal R Plant Signal Behav; 2015; 10(12):e1103406. PubMed ID: 26451896 [TBL] [Abstract][Full Text] [Related]
7. Proteomic Analysis of Rice Seedlings Under Cold Stress. Ji L; Zhou P; Zhu Y; Liu F; Li R; Qiu Y Protein J; 2017 Aug; 36(4):299-307. PubMed ID: 28555319 [TBL] [Abstract][Full Text] [Related]
8. A Protocol for the Plasma Membrane Proteome Analysis of Rice Leaves. Gupta R; Kim YJ; Kim ST Methods Mol Biol; 2020; 2139():107-115. PubMed ID: 32462581 [TBL] [Abstract][Full Text] [Related]
9. Towards an analysis of the rice mitochondrial proteome. Heazlewood JL; Howell KA; Whelan J; Millar AH Plant Physiol; 2003 May; 132(1):230-42. PubMed ID: 12746528 [TBL] [Abstract][Full Text] [Related]
10. Characterization of proteins responsive to gibberellin in the leaf-sheath of rice (Oryza sativa L.) seedling using proteome analysis. Shen S; Sharma A; Komatsu S Biol Pharm Bull; 2003 Feb; 26(2):129-36. PubMed ID: 12576669 [TBL] [Abstract][Full Text] [Related]
11. The organelle-focused proteomes and interactomes in rice. Liu L; Jiang L; Chen M Curr Protein Pept Sci; 2014; 15(6):583-90. PubMed ID: 25059325 [TBL] [Abstract][Full Text] [Related]
12. Comprehensive profiling of the rice ubiquitome reveals the significance of lysine ubiquitination in young leaves. Xie X; Kang H; Liu W; Wang GL J Proteome Res; 2015 May; 14(5):2017-25. PubMed ID: 25751157 [TBL] [Abstract][Full Text] [Related]
13. Proteome analysis of rice tissues by two-dimensional electrophoresis: an approach to the investigation of gibberellin regulated proteins. Tanaka N; Konishi H; Khan MM; Komatsu S Mol Genet Genomics; 2004 Jan; 270(6):485-96. PubMed ID: 14634867 [TBL] [Abstract][Full Text] [Related]
14. Proteomic analysis of upland rice (Oryza sativa L.) exposed to intermittent water deficit. Rabello FR; Villeth GR; Rabello AR; Rangel PH; GuimarĂ£es CM; Huergo LF; Souza EM; Pedrosa FO; Ferreira ME; Mehta A Protein J; 2014 Jun; 33(3):221-30. PubMed ID: 24652039 [TBL] [Abstract][Full Text] [Related]
15. Rice proteomics: a step toward functional analysis of the rice genome. Komatsu S; Konishi H; Shen S; Yang G Mol Cell Proteomics; 2003 Jan; 2(1):2-10. PubMed ID: 12601077 [TBL] [Abstract][Full Text] [Related]
16. Identification of gibberellin acid-responsive proteins in rice leaf sheath using proteomics. Gu JY; Wang Y; Zhang X; Zhang SH; Gao Y; An CC Front Biosci (Landmark Ed); 2010 Jun; 15(3):826-39. PubMed ID: 20515728 [TBL] [Abstract][Full Text] [Related]
17. A proteomic insight into the MSP1 and flg22 induced signaling in Oryza sativa leaves. Meng Q; Gupta R; Min CW; Kim J; Kramer K; Wang Y; Park SR; Finkemeier I; Kim ST J Proteomics; 2019 Mar; 196():120-130. PubMed ID: 29970347 [TBL] [Abstract][Full Text] [Related]
18. Rice proteomics: A move toward expanded proteome coverage to comparative and functional proteomics uncovers the mysteries of rice and plant biology. Agrawal GK; Rakwal R Proteomics; 2011 May; 11(9):1630-49. PubMed ID: 21462347 [TBL] [Abstract][Full Text] [Related]
19. Differential expression of defense/stress-related marker proteins in leaves of a unique rice blast lesion mimic mutant (blm). Jung YH; Rakwal R; Agrawal GK; Shibato J; Kim JA; Lee MO; Choi PK; Jung SH; Kim SH; Koh HJ; Yonekura M; Iwahashi H; Jwa NS J Proteome Res; 2006 Oct; 5(10):2586-98. PubMed ID: 17022630 [TBL] [Abstract][Full Text] [Related]
20. Identification of four functionally important microRNA families with contrasting differential expression profiles between drought-tolerant and susceptible rice leaf at vegetative stage. Cheah BH; Nadarajah K; Divate MD; Wickneswari R BMC Genomics; 2015 Sep; 16(1):692. PubMed ID: 26369665 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]