These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
293 related articles for article (PubMed ID: 21827428)
1. Identification of plant protein kinases in response to abiotic and biotic stresses using SuperSAGE. Kido EA; Barbosa PK; Neto JR; Pandolfi V; Houllou-Kido LM; Crovella S; Molina C; Kahl G; Benko-Iseppon AM Curr Protein Pept Sci; 2011 Nov; 12(7):643-56. PubMed ID: 21827428 [TBL] [Abstract][Full Text] [Related]
2. Sequencing and analysis of the gene-rich space of cowpea. Timko MP; Rushton PJ; Laudeman TW; Bokowiec MT; Chipumuro E; Cheung F; Town CD; Chen X BMC Genomics; 2008 Feb; 9():103. PubMed ID: 18304330 [TBL] [Abstract][Full Text] [Related]
3. Plant antimicrobial peptides: an overview of SuperSAGE transcriptional profile and a functional review. Kido EA; Pandolfi V; Houllou-Kido LM; Andrade PP; Marcelino FC; Nepomuceno AL; Abdelnoor RV; Burnquist WL; Benko-Iseppon AM Curr Protein Pept Sci; 2010 May; 11(3):220-30. PubMed ID: 20088771 [TBL] [Abstract][Full Text] [Related]
4. The salt-responsive transcriptome of chickpea roots and nodules via deepSuperSAGE. Molina C; Zaman-Allah M; Khan F; Fatnassi N; Horres R; Rotter B; Steinhauer D; Amenc L; Drevon JJ; Winter P; Kahl G BMC Plant Biol; 2011 Feb; 11():31. PubMed ID: 21320317 [TBL] [Abstract][Full Text] [Related]
5. New insights in the sugarcane transcriptome responding to drought stress as revealed by superSAGE. Kido ÉA; Ferreira Neto JR; Silva RL; Pandolfi V; Guimarães AC; Veiga DT; Chabregas SM; Crovella S; Benko-Iseppon AM ScientificWorldJournal; 2012; 2012():821062. PubMed ID: 22629208 [TBL] [Abstract][Full Text] [Related]
6. Enhancement of Plant Productivity in the Post-Genomics Era. Thao NP; Tran LS Curr Genomics; 2016 Aug; 17(4):295-6. PubMed ID: 27499678 [TBL] [Abstract][Full Text] [Related]
7. Identification of four functionally important microRNA families with contrasting differential expression profiles between drought-tolerant and susceptible rice leaf at vegetative stage. Cheah BH; Nadarajah K; Divate MD; Wickneswari R BMC Genomics; 2015 Sep; 16(1):692. PubMed ID: 26369665 [TBL] [Abstract][Full Text] [Related]
8. Identification of biotic and abiotic stress up-regulated ESTs in Gossypium arboreum. Barozai MY; Husnain T Mol Biol Rep; 2012 Feb; 39(2):1011-8. PubMed ID: 21556756 [TBL] [Abstract][Full Text] [Related]
9. Transcriptome Profiling of Two Asparagus Bean (Vigna unguiculata subsp. sesquipedalis) Cultivars Differing in Chilling Tolerance under Cold Stress. Tan H; Huang H; Tie M; Tang Y; Lai Y; Li H PLoS One; 2016; 11(3):e0151105. PubMed ID: 26954786 [TBL] [Abstract][Full Text] [Related]
10. Exploring drought stress-regulated genes in senna (Cassia angustifolia Vahl.): a transcriptomic approach. Mehta RH; Ponnuchamy M; Kumar J; Reddy NR Funct Integr Genomics; 2017 Jan; 17(1):1-25. PubMed ID: 27709374 [TBL] [Abstract][Full Text] [Related]
11. Plant Thaumatin-like Proteins: Function, Evolution and Biotechnological Applications. de Jesús-Pires C; Ferreira-Neto JRC; Pacifico Bezerra-Neto J; Kido EA; de Oliveira Silva RL; Pandolfi V; Wanderley-Nogueira AC; Binneck E; da Costa AF; Pio-Ribeiro G; Pereira-Andrade G; Sittolin IM; Freire-Filho F; Benko-Iseppon AM Curr Protein Pept Sci; 2020; 21(1):36-51. PubMed ID: 30887921 [TBL] [Abstract][Full Text] [Related]
12. Comparative Analysis of the Chrysanthemum Leaf Transcript Profiling in Response to Salt Stress. Wu YH; Wang T; Wang K; Liang QY; Bai ZY; Liu QL; Pan YZ; Jiang BB; Zhang L PLoS One; 2016; 11(7):e0159721. PubMed ID: 27447718 [TBL] [Abstract][Full Text] [Related]
16. Transcriptome analysis of grapevine under salinity and identification of key genes responsible for salt tolerance. Das P; Majumder AL Funct Integr Genomics; 2019 Jan; 19(1):61-73. PubMed ID: 30046943 [TBL] [Abstract][Full Text] [Related]
17. The green ash transcriptome and identification of genes responding to abiotic and biotic stresses. Lane T; Best T; Zembower N; Davitt J; Henry N; Xu Y; Koch J; Liang H; McGraw J; Schuster S; Shim D; Coggeshall MV; Carlson JE; Staton ME BMC Genomics; 2016 Sep; 17(1):702. PubMed ID: 27589953 [TBL] [Abstract][Full Text] [Related]
18. Genome-Wide Identification and Characterization of Major RNAi Genes Highlighting Their Associated Factors in Cowpea ( Hasan MN; Mosharaf MP; Uddin KS; Das KR; Sultana N; Noorunnahar M; Naim D; Mollah MNH Biomed Res Int; 2023; 2023():8832406. PubMed ID: 38046903 [TBL] [Abstract][Full Text] [Related]
19. The Cowpea Kinome: Genomic and Transcriptomic Analysis Under Biotic and Abiotic Stresses. Ferreira-Neto JRC; Borges ANDC; da Silva MD; Morais DAL; Bezerra-Neto JP; Bourque G; Kido EA; Benko-Iseppon AM Front Plant Sci; 2021; 12():667013. PubMed ID: 34194450 [TBL] [Abstract][Full Text] [Related]
20. Gene ontology based characterization of expressed sequence tags (ESTs) of Brassica rapa cv. Osome. Arasan SK; Park JI; Ahmed NU; Jung HJ; Lee IH; Cho YG; Lim YP; Kang KK; Nou IS Indian J Exp Biol; 2013 Jul; 51(7):522-30. PubMed ID: 23898551 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]