These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
234 related articles for article (PubMed ID: 21827948)
1. Dynamics of the phosphoinositide 3-kinase p110δ interaction with p85α and membranes reveals aspects of regulation distinct from p110α. Burke JE; Vadas O; Berndt A; Finegan T; Perisic O; Williams RL Structure; 2011 Aug; 19(8):1127-37. PubMed ID: 21827948 [TBL] [Abstract][Full Text] [Related]
2. Regulation of lipid binding underlies the activation mechanism of class IA PI3-kinases. Hon WC; Berndt A; Williams RL Oncogene; 2012 Aug; 31(32):3655-66. PubMed ID: 22120714 [TBL] [Abstract][Full Text] [Related]
3. Defining How Oncogenic and Developmental Mutations of PIK3R1 Alter the Regulation of Class IA Phosphoinositide 3-Kinases. Dornan GL; Stariha JTB; Rathinaswamy MK; Powell CJ; Boulanger MJ; Burke JE Structure; 2020 Feb; 28(2):145-156.e5. PubMed ID: 31831213 [TBL] [Abstract][Full Text] [Related]
4. Dynamic steps in receptor tyrosine kinase mediated activation of class IA phosphoinositide 3-kinases (PI3K) captured by H/D exchange (HDX-MS). Burke JE; Williams RL Adv Biol Regul; 2013 Jan; 53(1):97-110. PubMed ID: 23194976 [TBL] [Abstract][Full Text] [Related]
5. Conformational disruption of PI3Kδ regulation by immunodeficiency mutations in Dornan GL; Siempelkamp BD; Jenkins ML; Vadas O; Lucas CL; Burke JE Proc Natl Acad Sci U S A; 2017 Feb; 114(8):1982-1987. PubMed ID: 28167755 [TBL] [Abstract][Full Text] [Related]
6. Molecular mechanism of activation of class IA phosphoinositide 3-kinases (PI3Ks) by membrane-localized HRas. Siempelkamp BD; Rathinaswamy MK; Jenkins ML; Burke JE J Biol Chem; 2017 Jul; 292(29):12256-12266. PubMed ID: 28515318 [TBL] [Abstract][Full Text] [Related]
7. Regulation of the p85/p110alpha phosphatidylinositol 3'-kinase. Distinct roles for the n-terminal and c-terminal SH2 domains. Yu J; Wjasow C; Backer JM J Biol Chem; 1998 Nov; 273(46):30199-203. PubMed ID: 9804776 [TBL] [Abstract][Full Text] [Related]
8. Molecular Mechanisms of Human Disease Mediated by Oncogenic and Primary Immunodeficiency Mutations in Class IA Phosphoinositide 3-Kinases. Dornan GL; Burke JE Front Immunol; 2018; 9():575. PubMed ID: 29616047 [TBL] [Abstract][Full Text] [Related]
9. Activation of PI3K/Akt signaling by n-terminal SH2 domain mutants of the p85α regulatory subunit of PI3K is enhanced by deletion of its c-terminal SH2 domain. Hofmann BT; Jücker M Cell Signal; 2012 Oct; 24(10):1950-4. PubMed ID: 22735814 [TBL] [Abstract][Full Text] [Related]
10. Structure of lipid kinase p110β/p85β elucidates an unusual SH2-domain-mediated inhibitory mechanism. Zhang X; Vadas O; Perisic O; Anderson KE; Clark J; Hawkins PT; Stephens LR; Williams RL Mol Cell; 2011 Mar; 41(5):567-78. PubMed ID: 21362552 [TBL] [Abstract][Full Text] [Related]
11. Cancer-derived mutations in the regulatory subunit p85alpha of phosphoinositide 3-kinase function through the catalytic subunit p110alpha. Sun M; Hillmann P; Hofmann BT; Hart JR; Vogt PK Proc Natl Acad Sci U S A; 2010 Aug; 107(35):15547-52. PubMed ID: 20713702 [TBL] [Abstract][Full Text] [Related]
12. Cloning, expression, purification, and characterization of the human Class Ia phosphoinositide 3-kinase isoforms. Meier TI; Cook JA; Thomas JE; Radding JA; Horn C; Lingaraj T; Smith MC Protein Expr Purif; 2004 Jun; 35(2):218-24. PubMed ID: 15135396 [TBL] [Abstract][Full Text] [Related]
14. Oncogenic mutations mimic and enhance dynamic events in the natural activation of phosphoinositide 3-kinase p110α (PIK3CA). Burke JE; Perisic O; Masson GR; Vadas O; Williams RL Proc Natl Acad Sci U S A; 2012 Sep; 109(38):15259-64. PubMed ID: 22949682 [TBL] [Abstract][Full Text] [Related]
15. Oncogenic mutations weaken the interactions that stabilize the p110α-p85α heterodimer in phosphatidylinositol 3-kinase α. Echeverria I; Liu Y; Gabelli SB; Amzel LM FEBS J; 2015 Sep; 282(18):3528-42. PubMed ID: 26122737 [TBL] [Abstract][Full Text] [Related]
16. A biochemical mechanism for the oncogenic potential of the p110beta catalytic subunit of phosphoinositide 3-kinase. Dbouk HA; Pang H; Fiser A; Backer JM Proc Natl Acad Sci U S A; 2010 Nov; 107(46):19897-902. PubMed ID: 21030680 [TBL] [Abstract][Full Text] [Related]
17. Improved production of class I phosphatidylinositol 4,5-bisphosphate 3-kinase. Messing S; Widmeyer SRT; Denson JP; Mehalko J; Wall VE; Drew M; Snead K; Hong M; Grose C; Esposito D; Gillette W Protein Expr Purif; 2025 Jan; 225():106582. PubMed ID: 39173964 [TBL] [Abstract][Full Text] [Related]
18. The kinetics of folding of the NSH2 domain from p85. Visconti L; Malagrinò F; Toto A; Gianni S Sci Rep; 2019 Mar; 9(1):4058. PubMed ID: 30858483 [TBL] [Abstract][Full Text] [Related]
19. Interaction of Calmodulin with the cSH2 Domain of the p85 Regulatory Subunit. Wang G; Zhang M; Jang H; Lu S; Lin S; Chen G; Nussinov R; Zhang J; Gaponenko V Biochemistry; 2018 Mar; 57(12):1917-1928. PubMed ID: 29494137 [TBL] [Abstract][Full Text] [Related]
20. Solution structure of the C-terminal SH2 domain of the p85 alpha regulatory subunit of phosphoinositide 3-kinase. Siegal G; Davis B; Kristensen SM; Sankar A; Linacre J; Stein RC; Panayotou G; Waterfield MD; Driscoll PC J Mol Biol; 1998 Feb; 276(2):461-78. PubMed ID: 9512716 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]