BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 21827971)

  • 1. Real-time closed-loop control of cognitive load in neurological patients during robot-assisted gait training.
    Koenig A; Novak D; Omlin X; Pulfer M; Perreault E; Zimmerli L; Mihelj M; Riener R
    IEEE Trans Neural Syst Rehabil Eng; 2011 Aug; 19(4):453-64. PubMed ID: 21827971
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Psychophysiological measurements in a biocooperative feedback loop for upper extremity rehabilitation.
    Novak D; Mihelj M; Ziherl J; Olenšek A; Munih M
    IEEE Trans Neural Syst Rehabil Eng; 2011 Aug; 19(4):400-10. PubMed ID: 21708507
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Psychological state estimation from physiological recordings during robot-assisted gait rehabilitation.
    Koenig A; Omlin X; Zimmerli L; Sapa M; Krewer C; Bolliger M; Müller F; Riener R
    J Rehabil Res Dev; 2011; 48(4):367-85. PubMed ID: 21674389
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Feasibility and effects of patient-cooperative robot-aided gait training applied in a 4-week pilot trial.
    Schück A; Labruyère R; Vallery H; Riener R; Duschau-Wicke A
    J Neuroeng Rehabil; 2012 May; 9():31. PubMed ID: 22650320
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cortical response to psycho-physiological changes in auto-adaptive robot assisted gait training.
    Jelinek HF; August KG; Imam MH; Khandoker AH; Koenig A; Riener R
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():7409-12. PubMed ID: 22256051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional evaluation of robot end-point assisted gait re-education in chronic stroke survivors.
    De Luca A; Lentino C; Vernetti H; Checchia GA; Giannoni P; Morasso P; Casadio M
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650513. PubMed ID: 24187328
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combined transcranial direct current stimulation and robot-assisted gait training in patients with chronic stroke: a preliminary comparison.
    Geroin C; Picelli A; Munari D; Waldner A; Tomelleri C; Smania N
    Clin Rehabil; 2011 Jun; 25(6):537-48. PubMed ID: 21402651
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel robot-assisted training approach for improving gait symmetry after stroke.
    Zadravec M; Olensek A; Rudolf M; Bizovicar N; Goljar N; Matjacic Z
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():222-227. PubMed ID: 28813822
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective control of gait subtasks in robotic gait training: foot clearance support in stroke survivors with a powered exoskeleton.
    Koopman B; van Asseldonk EH; van der Kooij H
    J Neuroeng Rehabil; 2013 Jan; 10():3. PubMed ID: 23336754
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controlling patient participation during robot-assisted gait training.
    Koenig A; Omlin X; Bergmann J; Zimmerli L; Bolliger M; Müller F; Riener R
    J Neuroeng Rehabil; 2011 Mar; 8():14. PubMed ID: 21429200
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Robot-assisted gait training in a patient with hereditary spastic paraplegia.
    Seo HG; Oh BM; Kim K
    PM R; 2015 Feb; 7(2):210-3. PubMed ID: 25255290
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of robot-assisted gait training on cardiopulmonary fitness in subacute stroke patients: a randomized controlled study.
    Chang WH; Kim MS; Huh JP; Lee PK; Kim YH
    Neurorehabil Neural Repair; 2012 May; 26(4):318-24. PubMed ID: 22086903
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of training with a robot-virtual reality system compared with a robot alone on the gait of individuals after stroke.
    Mirelman A; Bonato P; Deutsch JE
    Stroke; 2009 Jan; 40(1):169-74. PubMed ID: 18988916
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gait training with a robotic leg brace after stroke: a randomized controlled pilot study.
    Stein J; Bishop L; Stein DJ; Wong CK
    Am J Phys Med Rehabil; 2014 Nov; 93(11):987-94. PubMed ID: 24901757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gait adaptation to visual kinematic perturbations using a real-time closed-loop brain-computer interface to a virtual reality avatar.
    Luu TP; He Y; Brown S; Nakagame S; Contreras-Vidal JL
    J Neural Eng; 2016 Jun; 13(3):036006. PubMed ID: 27064824
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Who may benefit from robotic-assisted gait training? A randomized clinical trial in patients with subacute stroke.
    Morone G; Bragoni M; Iosa M; De Angelis D; Venturiero V; Coiro P; Pratesi L; Paolucci S
    Neurorehabil Neural Repair; 2011 Sep; 25(7):636-44. PubMed ID: 21444654
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced gait-related improvements after therapist- versus robotic-assisted locomotor training in subjects with chronic stroke: a randomized controlled study.
    Hornby TG; Campbell DD; Kahn JH; Demott T; Moore JL; Roth HR
    Stroke; 2008 Jun; 39(6):1786-92. PubMed ID: 18467648
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Psychophysiological responses to robotic rehabilitation tasks in stroke.
    Novak D; Ziherl J; Olensek A; Milavec M; Podobnik J; Mihelj M; Munih M
    IEEE Trans Neural Syst Rehabil Eng; 2010 Aug; 18(4):351-61. PubMed ID: 20388601
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Does robot-assisted gait training ameliorate gait abnormalities in multiple sclerosis? A pilot randomized-control trial.
    Straudi S; Benedetti MG; Venturini E; Manca M; Foti C; Basaglia N
    NeuroRehabilitation; 2013; 33(4):555-63. PubMed ID: 24018369
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural and functional improvements due to robot-assisted gait training in the stroke-injured brain.
    Yang HE; Kyeong S; Lee SH; Lee WJ; Ha SW; Kim SM; Kang H; Lee WM; Kang CS; Kim DH
    Neurosci Lett; 2017 Jan; 637():114-119. PubMed ID: 27884739
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.