BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 21827982)

  • 1. [m-TOR inhibitors: biology and use in the treatment of haematological diseases].
    Balsat M; Cornillon J
    Bull Cancer; 2011 Aug; 98(8):935-43. PubMed ID: 21827982
    [TBL] [Abstract][Full Text] [Related]  

  • 2. m-TOR inhibitors and their potential role in haematological malignancies.
    Calimeri T; Ferreri AJM
    Br J Haematol; 2017 Jun; 177(5):684-702. PubMed ID: 28146265
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeting the translational apparatus to improve leukemia therapy: roles of the PI3K/PTEN/Akt/mTOR pathway.
    Martelli AM; Evangelisti C; Chappell W; Abrams SL; Bäsecke J; Stivala F; Donia M; Fagone P; Nicoletti F; Libra M; Ruvolo V; Ruvolo P; Kempf CR; Steelman LS; McCubrey JA
    Leukemia; 2011 Jul; 25(7):1064-79. PubMed ID: 21436840
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distinct signaling mechanisms of mTORC1 and mTORC2 in glioblastoma multiforme: a tale of two complexes.
    Jhanwar-Uniyal M; Gillick JL; Neil J; Tobias M; Thwing ZE; Murali R
    Adv Biol Regul; 2015 Jan; 57():64-74. PubMed ID: 25442674
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New inhibitors of the PI3K-Akt-mTOR pathway: insights into mTOR signaling from a new generation of Tor Kinase Domain Inhibitors (TORKinibs).
    Feldman ME; Shokat KM
    Curr Top Microbiol Immunol; 2010; 347():241-62. PubMed ID: 20549474
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Concurrent inhibition of PI3K and mTORC1/mTORC2 overcomes resistance to rapamycin induced apoptosis by down-regulation of Mcl-1 in mantle cell lymphoma.
    Müller A; Zang C; Chumduri C; Dörken B; Daniel PT; Scholz CW
    Int J Cancer; 2013 Oct; 133(8):1813-24. PubMed ID: 23580240
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biochemical, cellular, and in vivo activity of novel ATP-competitive and selective inhibitors of the mammalian target of rapamycin.
    Yu K; Toral-Barza L; Shi C; Zhang WG; Lucas J; Shor B; Kim J; Verheijen J; Curran K; Malwitz DJ; Cole DC; Ellingboe J; Ayral-Kaloustian S; Mansour TS; Gibbons JJ; Abraham RT; Nowak P; Zask A
    Cancer Res; 2009 Aug; 69(15):6232-40. PubMed ID: 19584280
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mammalian target of rapamycin and tuberous sclerosis complex.
    Wataya-Kaneda M
    J Dermatol Sci; 2015 Aug; 79(2):93-100. PubMed ID: 26051878
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of tumor cell growth, proliferation and migration by X-387, a novel active-site inhibitor of mTOR.
    Chen SM; Liu JL; Wang X; Liang C; Ding J; Meng LH
    Biochem Pharmacol; 2012 May; 83(9):1183-94. PubMed ID: 22305748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Perspectives on inhibiting mTOR as a future treatment strategy for hematological malignancies.
    Chapuis N; Tamburini J; Green AS; Willems L; Bardet V; Park S; Lacombe C; Mayeux P; Bouscary D
    Leukemia; 2010 Oct; 24(10):1686-99. PubMed ID: 20703258
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Torin2 Potentiates Anticancer Effects on Adult T-Cell Leukemia/Lymphoma by Inhibiting Mammalian Target of Rapamycin.
    Watanabe T; Sato A; Kobayashi-Watanabe N; Sueoka-Aragane N; Kimura S; Sueoka E
    Anticancer Res; 2016 Jan; 36(1):95-102. PubMed ID: 26722032
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deconstructing mTOR complexes in regulation of Glioblastoma Multiforme and its stem cells.
    Jhanwar-Uniyal M; Jeevan D; Neil J; Shannon C; Albert L; Murali R
    Adv Biol Regul; 2013 May; 53(2):202-10. PubMed ID: 23231881
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Emerging roles for mammalian target of rapamycin inhibitors in the treatment of solid tumors and hematological malignancies.
    Khokhar NZ; Altman JK; Platanias LC
    Curr Opin Oncol; 2011 Nov; 23(6):578-86. PubMed ID: 21892085
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Active kinase profiling, genetic and pharmacological data define mTOR as an important common target in triple-negative breast cancer.
    Montero JC; Esparís-Ogando A; Re-Louhau MF; Seoane S; Abad M; Calero R; Ocaña A; Pandiella A
    Oncogene; 2014 Jan; 33(2):148-56. PubMed ID: 23246963
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Target of rapamycin signaling in leukemia and lymphoma.
    Vu C; Fruman DA
    Clin Cancer Res; 2010 Nov; 16(22):5374-80. PubMed ID: 20826559
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeted inhibition of mTORC1 and mTORC2 by active-site mTOR inhibitors has cytotoxic effects in T-cell acute lymphoblastic leukemia.
    Evangelisti C; Ricci F; Tazzari P; Tabellini G; Battistelli M; Falcieri E; Chiarini F; Bortul R; Melchionda F; Pagliaro P; Pession A; McCubrey JA; Martelli AM
    Leukemia; 2011 May; 25(5):781-91. PubMed ID: 21331075
    [TBL] [Abstract][Full Text] [Related]  

  • 17. mTOR in renal cell cancer: modulator of tumor biology and therapeutic target.
    Wysocki PJ
    Expert Rev Mol Diagn; 2009 Apr; 9(3):231-41. PubMed ID: 19379082
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dissecting the role of mTOR: lessons from mTOR inhibitors.
    Dowling RJ; Topisirovic I; Fonseca BD; Sonenberg N
    Biochim Biophys Acta; 2010 Mar; 1804(3):433-9. PubMed ID: 20005306
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mammalian target of rapamycin: discovery of rapamycin reveals a signaling pathway important for normal and cancer cell growth.
    Gibbons JJ; Abraham RT; Yu K
    Semin Oncol; 2009 Dec; 36 Suppl 3():S3-S17. PubMed ID: 19963098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The inhibition of MAPK potentiates the anti-angiogenic efficacy of mTOR inhibitors.
    Dormond-Meuwly A; Roulin D; Dufour M; Benoit M; Demartines N; Dormond O
    Biochem Biophys Res Commun; 2011 Apr; 407(4):714-9. PubMed ID: 21439267
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.