BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 21828056)

  • 1. Structural and enzymatic insights into caspase-2 protein substrate recognition and catalysis.
    Tang Y; Wells JA; Arkin MR
    J Biol Chem; 2011 Sep; 286(39):34147-54. PubMed ID: 21828056
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural and kinetic analysis of caspase-3 reveals role for s5 binding site in substrate recognition.
    Fang B; Boross PI; Tozser J; Weber IT
    J Mol Biol; 2006 Jul; 360(3):654-66. PubMed ID: 16781734
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantum Mechanics/Molecular Mechanics Study on Caspase-2 Recognition by Peptide Inhibitors.
    Mitrasinovic PM
    Acta Chim Slov; 2020 Sep; 67(3):876-884. PubMed ID: 33533429
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural basis for executioner caspase recognition of P5 position in substrates.
    Fu G; Chumanevich AA; Agniswamy J; Fang B; Harrison RW; Weber IT
    Apoptosis; 2008 Nov; 13(11):1291-302. PubMed ID: 18780184
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of the tertiary structure and substrate binding site of caspase-8.
    Chou KC; Jones D; Heinrikson RL
    FEBS Lett; 1997 Dec; 419(1):49-54. PubMed ID: 9426218
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Caspase-8 specificity probed at subsite S(4): crystal structure of the caspase-8-Z-DEVD-cho complex.
    Blanchard H; Donepudi M; Tschopp M; Kodandapani L; Wu JC; Grütter MG
    J Mol Biol; 2000 Sep; 302(1):9-16. PubMed ID: 10964557
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of the minimal specificity of caspase-2 and identification of Ac-VDTTD-AFC as a caspase-2-selective peptide substrate.
    Kitevska T; Roberts SJ; Pantaki-Eimany D; Boyd SE; Scott FL; Hawkins CJ
    Biosci Rep; 2014 Apr; 34(2):. PubMed ID: 27919034
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Caspases-2 and -8 are involved in the presenilin1/gamma-secretase-dependent cleavage of amyloid precursor protein after the induction of apoptosis.
    Chae SS; Yoo CB; Jo C; Yun SM; Jo SA; Koh YH
    J Neurosci Res; 2010 Jul; 88(9):1926-33. PubMed ID: 20143425
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structures of mouse class II alcohol dehydrogenase reveal determinants of substrate specificity and catalytic efficiency.
    Svensson S; Höög JO; Schneider G; Sandalova T
    J Mol Biol; 2000 Sep; 302(2):441-53. PubMed ID: 10970744
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing the promiscuity of a member of the Caspase protease family by rational design.
    Öhlknecht C; Petrov D; Engele P; Kröß C; Sprenger B; Fischer A; Lingg N; Schneider R; Oostenbrink C
    Proteins; 2020 Oct; 88(10):1303-1318. PubMed ID: 32432825
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural and biochemical investigations of the catalytic mechanism of an NADP-dependent aldehyde dehydrogenase from Streptococcus mutans.
    Cobessi D; Tête-Favier F; Marchal S; Branlant G; Aubry A
    J Mol Biol; 2000 Jun; 300(1):141-52. PubMed ID: 10864505
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of residues surrounding the active site of type A botulinum neurotoxin important for substrate recognition and catalytic activity.
    Ahmed SA; Olson MA; Ludivico ML; Gilsdorf J; Smith LA
    Protein J; 2008 Apr; 27(3):151-62. PubMed ID: 18213512
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Caspases: key mediators of apoptosis.
    Thornberry NA
    Chem Biol; 1998 May; 5(5):R97-103. PubMed ID: 9578633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploiting differences in caspase-2 and -3 S₂ subsites for selectivity: structure-based design, solid-phase synthesis and in vitro activity of novel substrate-based caspase-2 inhibitors.
    Maillard MC; Brookfield FA; Courtney SM; Eustache FM; Gemkow MJ; Handel RK; Johnson LC; Johnson PD; Kerry MA; Krieger F; Meniconi M; Muñoz-Sanjuán I; Palfrey JJ; Park H; Schaertl S; Taylor MG; Weddell D; Dominguez C
    Bioorg Med Chem; 2011 Oct; 19(19):5833-51. PubMed ID: 21903398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Requirement for Serine-384 in Caspase-2 processing and activity.
    Zamaraev AV; Volik PI; Nilov DK; Turkina MV; Egorshina AY; Gorbunova AS; Iarovenko SI; Zhivotovsky B; Kopeina GS
    Cell Death Dis; 2020 Oct; 11(10):825. PubMed ID: 33011746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activation of caspase-2 in apoptosis.
    Li H; Bergeron L; Cryns V; Pasternack MS; Zhu H; Shi L; Greenberg A; Yuan J
    J Biol Chem; 1997 Aug; 272(34):21010-7. PubMed ID: 9261102
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural insight into activation mechanism of Toxoplasma gondii nucleoside triphosphate diphosphohydrolases by disulfide reduction.
    Krug U; Zebisch M; Krauss M; Sträter N
    J Biol Chem; 2012 Jan; 287(5):3051-66. PubMed ID: 22130673
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Degradomics reveals that cleavage specificity profiles of caspase-2 and effector caspases are alike.
    Wejda M; Impens F; Takahashi N; Van Damme P; Gevaert K; Vandenabeele P
    J Biol Chem; 2012 Oct; 287(41):33983-95. PubMed ID: 22825847
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Caspases: the executioners of apoptosis.
    Cohen GM
    Biochem J; 1997 Aug; 326 ( Pt 1)(Pt 1):1-16. PubMed ID: 9337844
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Caspases: enemies within.
    Thornberry NA; Lazebnik Y
    Science; 1998 Aug; 281(5381):1312-6. PubMed ID: 9721091
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.