These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 21828425)

  • 1. Upper critical magnetic fields in superconductor/ferromagnet hybrids.
    Cirillo C; Prischepa SL; Attanasio C
    J Phys Condens Matter; 2009 Jun; 21(25):254201. PubMed ID: 21828425
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Angular dependence of the superconducting transition temperature in ferromagnet-superconductor-ferromagnet trilayers.
    Zhu J; Krivorotov IN; Halterman K; Valls OT
    Phys Rev Lett; 2010 Nov; 105(20):207002. PubMed ID: 21231256
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnetization-orientation dependence of the superconducting transition temperature in the ferromagnet-superconductor-ferromagnet system: CuNi/Nb/CuNi.
    Gu JY; You CY; Jiang JS; Pearson J; Bazaliy YB; Bader SD
    Phys Rev Lett; 2002 Dec; 89(26):267001. PubMed ID: 12484851
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Change of the effective dimensionality of an Nb/CuNi bilayer in an external magnetic field.
    Kehrle JM; Zdravkov V; Morari R; Prepelitsa A; Müller C; Wixforth A; Horn S; Tidecks R; Sidorenko A
    J Phys Condens Matter; 2009 Jun; 21(25):254202. PubMed ID: 21828426
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Magnetization-dependent shift in ferromagnet/superconductor/ferromagnet trilayers with a strong ferromagnet.
    Moraru IC; Pratt WP; Birge NO
    Phys Rev Lett; 2006 Jan; 96(3):037004. PubMed ID: 16486758
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reentrant superconductivity in Nb/Cu1-xNix bilayers.
    Zdravkov V; Sidorenko A; Obermeier G; Gsell S; Schreck M; Müller C; Horn S; Tidecks R; Tagirov LR
    Phys Rev Lett; 2006 Aug; 97(5):057004. PubMed ID: 17026134
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Observation of reduced activation energy and the possible existence of decoupled pancake vortices in superconductor/ferromagnet bilayers.
    Samal D; Sow C; Kumar PS
    J Phys Condens Matter; 2010 Jul; 22(29):295701. PubMed ID: 21399316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Domain-wall superconductivity in superconductor-ferromagnet hybrids.
    Yang Z; Lange M; Volodin A; Szymczak R; Moshchalkov VV
    Nat Mater; 2004 Nov; 3(11):793-8. PubMed ID: 15467724
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Superconducting magnetoresistance in ferromagnet/superconductor/ferromagnet trilayers.
    Stamopoulos D; Aristomenopoulou E
    Sci Rep; 2015 Aug; 5():13420. PubMed ID: 26306543
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interplay of magnetic and superconducting proximity effects in ferromagnet-superconductor-ferromagnet trilayers.
    Löfwander T; Champel T; Durst J; Eschrig M
    Phys Rev Lett; 2005 Oct; 95(18):187003. PubMed ID: 16383937
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Domain-wall guided nucleation of superconductivity in hybrid ferromagnet-superconductor-ferromagnet layered structures.
    Gillijns W; Aladyshkin AY; Lange M; Van Bael MJ; Moshchalkov VV
    Phys Rev Lett; 2005 Nov; 95(22):227003. PubMed ID: 16384256
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Half-integer Shapiro steps at the 0-pi crossover of a ferromagnetic Josephson junction.
    Sellier H; Baraduc C; Lefloch F; Calemczuk R
    Phys Rev Lett; 2004 Jun; 92(25 Pt 1):257005. PubMed ID: 15245053
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 0-pi Josephson tunnel junctions with ferromagnetic barrier.
    Weides M; Kemmler M; Kohlstedt H; Waser R; Koelle D; Kleiner R; Goldobin E
    Phys Rev Lett; 2006 Dec; 97(24):247001. PubMed ID: 17280309
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unanticipated proximity behavior in ferromagnet-superconductor heterostructures with controlled magnetic noncollinearity.
    Zhu LY; Liu Y; Bergeret FS; Pearson JE; te Velthuis SG; Bader SD; Jiang JS
    Phys Rev Lett; 2013 Apr; 110(17):177001. PubMed ID: 23679759
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Superconducting straintronics via the proximity effect in superconductor-ferromagnet nanostructures.
    Savostin EO; Pertsev NA
    Nanoscale; 2020 Jan; 12(2):648-657. PubMed ID: 31829393
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Manifestation of new interference effects in a superconductor-ferromagnet spin valve.
    Leksin PV; Garif'yanov NN; Garifullin IA; Schumann J; Kataev V; Schmidt OG; Büchner B
    Phys Rev Lett; 2011 Feb; 106(6):067005. PubMed ID: 21405489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancement of the superconducting transition temperature in Nb/permalloy bilayers by controlling the domain state of the ferromagnet.
    Rusanov AY; Hesselberth M; Aarts J; Buzdin AI
    Phys Rev Lett; 2004 Jul; 93(5):057002. PubMed ID: 15323725
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quasiparticle relaxation mechanisms in superconductor/ferromagnet bilayers.
    Attanasio C; Cirillo C
    J Phys Condens Matter; 2012 Feb; 24(8):083201. PubMed ID: 22314798
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proximity effect in [Nb(1.5 nm)/Fe(
    Khaydukov Y; Pütter S; Guasco L; Morari R; Kim G; Keller T; Sidorenko A; Keimer B
    Beilstein J Nanotechnol; 2020; 11():1254-1263. PubMed ID: 32874825
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Local observation of reverse-domain superconductivity in a superconductor-ferromagnet hybrid.
    Fritzsche J; Moshchalkov VV; Eitel H; Koelle D; Kleiner R; Szymczak R
    Phys Rev Lett; 2006 Jun; 96(24):247003. PubMed ID: 16907272
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.