These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 21828426)

  • 1. Change of the effective dimensionality of an Nb/CuNi bilayer in an external magnetic field.
    Kehrle JM; Zdravkov V; Morari R; Prepelitsa A; Müller C; Wixforth A; Horn S; Tidecks R; Sidorenko A
    J Phys Condens Matter; 2009 Jun; 21(25):254202. PubMed ID: 21828426
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnetization-orientation dependence of the superconducting transition temperature in the ferromagnet-superconductor-ferromagnet system: CuNi/Nb/CuNi.
    Gu JY; You CY; Jiang JS; Pearson J; Bazaliy YB; Bader SD
    Phys Rev Lett; 2002 Dec; 89(26):267001. PubMed ID: 12484851
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Upper critical magnetic fields in superconductor/ferromagnet hybrids.
    Cirillo C; Prischepa SL; Attanasio C
    J Phys Condens Matter; 2009 Jun; 21(25):254201. PubMed ID: 21828425
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnetization-dependent shift in ferromagnet/superconductor/ferromagnet trilayers with a strong ferromagnet.
    Moraru IC; Pratt WP; Birge NO
    Phys Rev Lett; 2006 Jan; 96(3):037004. PubMed ID: 16486758
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Angular dependence of the superconducting transition temperature in ferromagnet-superconductor-ferromagnet trilayers.
    Zhu J; Krivorotov IN; Halterman K; Valls OT
    Phys Rev Lett; 2010 Nov; 105(20):207002. PubMed ID: 21231256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reentrant superconductivity in Nb/Cu1-xNix bilayers.
    Zdravkov V; Sidorenko A; Obermeier G; Gsell S; Schreck M; Müller C; Horn S; Tidecks R; Tagirov LR
    Phys Rev Lett; 2006 Aug; 97(5):057004. PubMed ID: 17026134
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Observation of reduced activation energy and the possible existence of decoupled pancake vortices in superconductor/ferromagnet bilayers.
    Samal D; Sow C; Kumar PS
    J Phys Condens Matter; 2010 Jul; 22(29):295701. PubMed ID: 21399316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensionality of field-induced magnetism in a high-temperature superconductor.
    Lake B; Lefmann K; Christensen NB; Aeppli G; McMorrow DF; Ronnow HM; Vorderwisch P; Smeibidl P; Mangkorntong N; Sasagawa T; Nohara M; Takagi H
    Nat Mater; 2005 Sep; 4(9):658-62. PubMed ID: 16100515
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Superconductivity in 4-Angstrom carbon nanotubes--a short review.
    Wang Z; Shi W; Lortz R; Sheng P
    Nanoscale; 2012 Jan; 4(1):21-41. PubMed ID: 22105840
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetic field induced enlargement of the regime of critical fluctuations in the classical superconductor V3Si from high-resolution specific heat experiments.
    Zheng Y; Liu Y; Toyota N; Lortz R
    J Phys Condens Matter; 2015 Feb; 27(7):075701. PubMed ID: 25640214
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inverse proximity effect in superconductor-ferromagnet bilayer structures.
    Xia J; Shelukhin V; Karpovski M; Kapitulnik A; Palevski A
    Phys Rev Lett; 2009 Feb; 102(8):087004. PubMed ID: 19257779
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microwave spectroscopy evidence of superconducting pairing in the magnetic-field-induced metallic state of InO(x) films at zero temperature.
    Liu W; Pan L; Wen J; Kim M; Sambandamurthy G; Armitage NP
    Phys Rev Lett; 2013 Aug; 111(6):067003. PubMed ID: 23971604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Domain-wall superconductivity in superconductor-ferromagnet hybrids.
    Yang Z; Lange M; Volodin A; Szymczak R; Moshchalkov VV
    Nat Mater; 2004 Nov; 3(11):793-8. PubMed ID: 15467724
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Superconducting straintronics via the proximity effect in superconductor-ferromagnet nanostructures.
    Savostin EO; Pertsev NA
    Nanoscale; 2020 Jan; 12(2):648-657. PubMed ID: 31829393
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effective Exchange Energy in a Thin, Spatially Inhomogeneous CuNi Layer Proximized by Nb.
    Stolyarov V; Oboznov V; Kasatonov D; Neilo A; Bakurskiy S; Klenov N; Soloviev I; Kupriyanov M; Golubov A; Cren T; Roditchev D
    J Phys Chem Lett; 2022 Jul; 13(28):6400-6406. PubMed ID: 35802799
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluctuation conductivity of thin films and nanowires near a parallel-field-tuned superconducting quantum phase transition.
    Lopatin AV; Shah N; Vinokur VM
    Phys Rev Lett; 2005 Jan; 94(3):037003. PubMed ID: 15698309
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oscillations of the superconducting critical current in Nb-Cu-Ni-Cu-Nb junctions.
    Blum Y; Tsukernik A; Karpovski M; Palevski A
    Phys Rev Lett; 2002 Oct; 89(18):187004. PubMed ID: 12398630
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 0-pi Josephson tunnel junctions with ferromagnetic barrier.
    Weides M; Kemmler M; Kohlstedt H; Waser R; Koelle D; Kleiner R; Goldobin E
    Phys Rev Lett; 2006 Dec; 97(24):247001. PubMed ID: 17280309
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Superconducting switching due to a triplet component in the Pb/Cu/Ni/Cu/Co
    Kamashev AA; Garif'yanov NN; Validov AA; Schumann J; Kataev V; Büchner B; Fominov YV; Garifullin IA
    Beilstein J Nanotechnol; 2019; 10():1458-1463. PubMed ID: 31431858
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancement of the Josephson current by an exchange field in superconductor-ferromagnet structures.
    Bergeret FS; Volkov AF; Efetov KB
    Phys Rev Lett; 2001 Apr; 86(14):3140-3. PubMed ID: 11290127
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.