These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 21828564)
1. Space charge effects in photoemission electron microscopy using amplified femtosecond laser pulses. Buckanie NM; Göhre J; Zhou P; von der Linde D; Horn-von Hoegen M; Meyer Zu Heringdorf FJ J Phys Condens Matter; 2009 Aug; 21(31):314003. PubMed ID: 21828564 [TBL] [Abstract][Full Text] [Related]
2. Correction of the deterministic part of space-charge interaction in momentum microscopy of charged particles. Schönhense G; Medjanik K; Tusche C; de Loos M; van der Geer B; Scholz M; Hieke F; Gerken N; Kirschner J; Wurth W Ultramicroscopy; 2015 Dec; 159 Pt 3():488-96. PubMed ID: 26051657 [TBL] [Abstract][Full Text] [Related]
4. Full characterization and optimization of a femtosecond ultraviolet laser source for time and angle-resolved photoemission on solid surfaces. Faure J; Mauchain J; Papalazarou E; Yan W; Pinon J; Marsi M; Perfetti L Rev Sci Instrum; 2012 Apr; 83(4):043109. PubMed ID: 22559517 [TBL] [Abstract][Full Text] [Related]
5. Interferometric time- and energy-resolved photoemission electron microscopy for few-femtosecond nanoplasmonic dynamics. Gliserin A; Chew SH; Choi S; Kim K; Hallinan DT; Oh JW; Kim S; Kim DE Rev Sci Instrum; 2019 Sep; 90(9):093904. PubMed ID: 31575236 [TBL] [Abstract][Full Text] [Related]
6. Comparison of broadband and ultrabroadband pulses at MHz and GHz pulse-repetition rates for nonlinear femtosecond-laser scanning microscopy. Studier H; Breunig HG; König K J Biophotonics; 2011 Jan; 4(1-2):84-91. PubMed ID: 20222101 [TBL] [Abstract][Full Text] [Related]
13. Femtosecond laser processing of biopolymers at high repetition rate. Gaspard S; Forster M; Huber C; Zafiu C; Trettenhahn G; Kautek W; Castillejo M Phys Chem Chem Phys; 2008 Oct; 10(40):6174-81. PubMed ID: 18846308 [TBL] [Abstract][Full Text] [Related]
14. Measurement of femtosecond electron pulse length and the temporal broadening due to space charge. Wang X; Nie S; Park H; Li J; Clinite R; Li R; Wang X; Cao J Rev Sci Instrum; 2009 Jan; 80(1):013902. PubMed ID: 19191442 [TBL] [Abstract][Full Text] [Related]
15. Time-resolved interferometry of femtosecond-laser-induced processes under tight focusing and close-to-optical breakdown inside borosilicate glass. Hayasaki Y; Isaka M; Takita A; Juodkazis S Opt Express; 2011 Mar; 19(7):5725-34. PubMed ID: 21451597 [TBL] [Abstract][Full Text] [Related]
16. Time of flight-photoemission electron microscope for ultrahigh spatiotemporal probing of nanoplasmonic optical fields. Lin J; Weber N; Wirth A; Chew SH; Escher M; Merkel M; Kling MF; Stockman MI; Krausz F; Kleineberg U J Phys Condens Matter; 2009 Aug; 21(31):314005. PubMed ID: 21828566 [TBL] [Abstract][Full Text] [Related]
17. Methodology and implementation of a tunable deep-ultraviolet laser source for photoemission electron microscopy. Winchester AJ; Anderson TJ; Hite JK; Elmquist RE; Pookpanratana S Ultramicroscopy; 2023 Nov; 253():113819. PubMed ID: 37549583 [TBL] [Abstract][Full Text] [Related]
18. X-ray pulses approaching the attosecond frontier. Drescher M; Hentschel M; Kienberger R; Tempea G; Spielmann C; Reider GA; Corkum PB; Krausz F Science; 2001 Mar; 291(5510):1923-7. PubMed ID: 11239146 [TBL] [Abstract][Full Text] [Related]
19. Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water. Juhasz T; Kastis GA; Suárez C; Bor Z; Bron WE Lasers Surg Med; 1996; 19(1):23-31. PubMed ID: 8836993 [TBL] [Abstract][Full Text] [Related]