These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 21828584)

  • 1. The influence of anisotropic diffusion on Ag nanowire formation.
    Wall D; Sindermann S; Roos KR; Horn-von Hoegen M; Meyer Zu Heringdorf FJ
    J Phys Condens Matter; 2009 Aug; 21(31):314023. PubMed ID: 21828584
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temperature dependent low energy electron microscopy study of Ge island growth on bare and Ga terminated Si(112).
    Speckmann M; Schmidt T; Flege JI; Sadowski JT; Sutter P; Falta J
    J Phys Condens Matter; 2009 Aug; 21(31):314020. PubMed ID: 21828581
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vertically standing Ge nanowires on GaAs(110) substrates.
    Song MS; Jung JH; Kim Y; Wang Y; Zou J; Joyce HJ; Gao Q; Tan HH; Jagadish C
    Nanotechnology; 2008 Mar; 19(12):125602. PubMed ID: 21817734
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ag-assisted CBE growth of ordered InSb nanowire arrays.
    Vogel AT; de Boor J; Becker M; Wittemann JV; Mensah SL; Werner P; Schmidt V
    Nanotechnology; 2011 Jan; 22(1):015605. PubMed ID: 21135461
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparative study of CCl(4) reactions on Ag and Si surfaces by in situ ultraviolet photoemission electron microscopy.
    Yao Y; Fu Q; Tan D; Bao X
    J Phys Condens Matter; 2009 Aug; 21(31):314014. PubMed ID: 21828575
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A high-resolution core-level photoemission study of the Au/4H-SiC(0001)-([Formula: see text]) interface.
    Stoltz D; Stoltz SE; Johansson LS
    J Phys Condens Matter; 2007 Jul; 19(26):266006. PubMed ID: 21694075
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Growth characteristics of GaAs nanowires obtained by selective area metal-organic vapour-phase epitaxy.
    Ikejiri K; Sato T; Yoshida H; Hiruma K; Motohisa J; Hara S; Fukui T
    Nanotechnology; 2008 Jul; 19(26):265604. PubMed ID: 21828685
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anisotropic interface induced formation of Sb nanowires on GaSb(111)A substrates.
    Proessdorf A; Grosse F; Perumal K; Braun W; Riechert H
    Nanotechnology; 2012 Jun; 23(23):235301. PubMed ID: 22595679
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low-temperature synthesis of single crystalline Ag2S nanowires on silver substrates.
    Wen X; Wang S; Xie Y; Li XY; Yang S
    J Phys Chem B; 2005 May; 109(20):10100-6. PubMed ID: 16852224
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gold-catalyzed low-temperature growth of cadmium oxide nanowires by vapor transport.
    Kuo TJ; Huang MH
    J Phys Chem B; 2006 Jul; 110(28):13717-21. PubMed ID: 16836315
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of self-assembled growth of ordered GaAs nanowire arrays by metalorganic vapor phase epitaxy on GaAs vicinal substrates.
    Mohan P; Bag R; Singh S; Kumar A; Tyagi R
    Nanotechnology; 2012 Jan; 23(2):025601. PubMed ID: 22166369
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-crystalline Ni2Ge/Ge/Ni2Ge nanowire heterostructure transistors.
    Tang J; Wang CY; Xiu F; Hong AJ; Chen S; Wang M; Zeng C; Yang HJ; Tuan HY; Tsai CJ; Chen LJ; Wang KL
    Nanotechnology; 2010 Dec; 21(50):505704. PubMed ID: 21098938
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electromigration and potentiometry measurements of single-crystalline Ag nanowires under UHV conditions.
    Kaspers MR; Bernhart AM; Meyer Zu Heringdorf FJ; Dumpich G; Möller R
    J Phys Condens Matter; 2009 Jul; 21(26):265601. PubMed ID: 21828474
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanistic studies on the formation of silver nanowires by a hydrothermal method.
    Tetsumoto T; Gotoh Y; Ishiwatari T
    J Colloid Interface Sci; 2011 Oct; 362(2):267-73. PubMed ID: 21774944
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Guiding vapor-liquid-solid nanowire growth using SiO2.
    Quitoriano NJ; Wu W; Kamins TI
    Nanotechnology; 2009 Apr; 20(14):145303. PubMed ID: 19420522
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wurtzite ZnSe nanowires: growth, photoluminescence, and single-wire Raman properties.
    Shan CX; Liu Z; Zhang XT; Wong CC; Hark SK
    Nanotechnology; 2006 Nov; 17(22):5561-4. PubMed ID: 21727324
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature conditions for GaAs nanowire formation by Au-assisted molecular beam epitaxy.
    Tchernycheva M; Harmand JC; Patriarche G; Travers L; Cirlin GE
    Nanotechnology; 2006 Aug; 17(16):4025-30. PubMed ID: 21727532
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Some aspects of substrate pretreatment for epitaxial Si nanowire growth.
    Lugstein A; Hyun YJ; Steinmair M; Dielacher B; Hauer G; Bertagnolli E
    Nanotechnology; 2008 Dec; 19(48):485606. PubMed ID: 21836307
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-assembled growth and luminescence of crystalline Si/SiOx core-shell nanowires.
    Kim S; Kim CO; Shin DH; Hong SH; Kim MC; Kim J; Choi SH; Kim T; Elliman RG; Kim YM
    Nanotechnology; 2010 May; 21(20):205601. PubMed ID: 20413841
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlled growth of large-area, uniform, vertically aligned arrays of alpha-Fe2O3 nanobelts and nanowires.
    Wen X; Wang S; Ding Y; Wang ZL; Yang S
    J Phys Chem B; 2005 Jan; 109(1):215-20. PubMed ID: 16851007
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.