These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

353 related articles for article (PubMed ID: 21828663)

  • 1. Fabrication of slantingly-aligned silicon nanowire arrays for solar cell applications.
    Fang H; Li X; Song S; Xu Y; Zhu J
    Nanotechnology; 2008 Jun; 19(25):255703. PubMed ID: 21828663
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Large area fabrication of vertical silicon nanowire arrays by silver-assisted single-step chemical etching and their formation kinetics.
    Srivastava SK; Kumar D; Schmitt SW; Sood KN; Christiansen SH; Singh PK
    Nanotechnology; 2014 May; 25(17):175601. PubMed ID: 24717841
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inorganic/organic hybrid solar cells: optimal carrier transport in vertically aligned silicon nanowire arrays.
    Sato K; Dutta M; Fukata N
    Nanoscale; 2014 Jun; 6(11):6092-101. PubMed ID: 24789210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabricating vertically aligned sub-20 nm Si nanowire arrays by chemical etching and thermal oxidation.
    Li L; Fang Y; Xu C; Zhao Y; Zang N; Jiang P; Ziegler KJ
    Nanotechnology; 2016 Apr; 27(16):165303. PubMed ID: 26953775
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Top-down fabrication of fully CMOS-compatible silicon nanowire arrays and their integration into CMOS Inverters on plastic.
    Lee M; Jeon Y; Moon T; Kim S
    ACS Nano; 2011 Apr; 5(4):2629-36. PubMed ID: 21355599
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hybrid heterojunction solar cell based on organic-inorganic silicon nanowire array architecture.
    Shen X; Sun B; Liu D; Lee ST
    J Am Chem Soc; 2011 Dec; 133(48):19408-15. PubMed ID: 22035274
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rice-straw-like structure of silicon nanowire arrays for a hydrogen gas sensor.
    Huang BR; Yang YK; Cheng HL
    Nanotechnology; 2013 Nov; 24(47):475502. PubMed ID: 24177925
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wafer-scale high-throughput ordered arrays of Si and coaxial Si/Si(1-x)Ge(x) wires: fabrication, characterization, and photovoltaic application.
    Pan C; Luo Z; Xu C; Luo J; Liang R; Zhu G; Wu W; Guo W; Yan X; Xu J; Wang ZL; Zhu J
    ACS Nano; 2011 Aug; 5(8):6629-36. PubMed ID: 21749059
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Versatile Particle-Based Route to Engineer Vertically Aligned Silicon Nanowire Arrays and Nanoscale Pores.
    Elnathan R; Isa L; Brodoceanu D; Nelson A; Harding FJ; Delalat B; Kraus T; Voelcker NH
    ACS Appl Mater Interfaces; 2015 Oct; 7(42):23717-24. PubMed ID: 26428032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Large scale low cost fabrication of diameter controllable silicon nanowire arrays.
    Sun L; Fan Y; Wang X; Agung Susantyoko R; Zhang Q
    Nanotechnology; 2014 Jun; 25(25):255302. PubMed ID: 24896291
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent Advances in Structuring and Patterning Silicon Nanowire Arrays for Engineering Light Absorption in Three Dimensions.
    Bartschmid T; Wendisch FJ; Farhadi A; Bourret GR
    ACS Appl Energy Mater; 2022 May; 5(5):5307-5317. PubMed ID: 35647497
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of silicon nanowire arrays by near-field laser ablation and metal-assisted chemical etching.
    Brodoceanu D; Alhmoud HZ; Elnathan R; Delalat B; Voelcker NH; Kraus T
    Nanotechnology; 2016 Feb; 27(7):075301. PubMed ID: 26778665
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications.
    Lin C; Povinelli ML
    Opt Express; 2009 Oct; 17(22):19371-81. PubMed ID: 19997158
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Realization of effective light trapping and omnidirectional antireflection in smooth surface silicon nanowire arrays.
    Xie WQ; Oh JI; Shen WZ
    Nanotechnology; 2011 Feb; 22(6):065704. PubMed ID: 21212474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Patterned growth of carbon nanotubes over vertically aligned silicon nanowire bundles for achieving uniform field emission.
    Hung YJ; Huang YJ; Chang HC; Lee KY; Lee SL
    Nanoscale Res Lett; 2014; 9(1):540. PubMed ID: 25298758
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell adhesion and spreading behavior on vertically aligned silicon nanowire arrays.
    Qi S; Yi C; Ji S; Fong CC; Yang M
    ACS Appl Mater Interfaces; 2009 Jan; 1(1):30-4. PubMed ID: 20355748
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conjugated polymer-silicon nanowire array hybrid Schottky diode for solar cell application.
    Zhang F; Song T; Sun B
    Nanotechnology; 2012 May; 23(19):194006. PubMed ID: 22538992
    [TBL] [Abstract][Full Text] [Related]  

  • 18. a-Si:H/SiNW shell/core for SiNW solar cell applications.
    Ashour ES; Sulaiman MY; Ruslan MH; Sopian K
    Nanoscale Res Lett; 2013 Nov; 8(1):466. PubMed ID: 24195734
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of electroless etching parameters on the growth and reflection properties of silicon nanowires.
    Ozdemir B; Kulakci M; Turan R; Unalan HE
    Nanotechnology; 2011 Apr; 22(15):155606. PubMed ID: 21389572
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antireflective silicon surface with vertical-aligned silicon nanowires realized by simple wet chemical etching processes.
    Hung YJ; Lee SL; Wu KC; Tai Y; Pan YT
    Opt Express; 2011 Aug; 19(17):15792-802. PubMed ID: 21934941
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.