These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 21828693)

  • 1. Synthesis, assembly, and characterization of Si nanocrystals and Si nanocrystal-carbon nanotube hybrid structures.
    Liu M; Lu G; Chen J
    Nanotechnology; 2008 Jul; 19(26):265705. PubMed ID: 21828693
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controllable photoelectron transfer in CdSe nanocrystal-carbon nanotube hybrid structures.
    Yu K; Lu G; Chen K; Mao S; Kim H; Chen J
    Nanoscale; 2012 Feb; 4(3):742-6. PubMed ID: 22186875
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon nanotube memory by the self-assembly of silicon nanocrystals as charge storage nodes.
    Olmedo M; Wang C; Ryu K; Zhou H; Ren J; Zhan N; Zhou C; Liu J
    ACS Nano; 2011 Oct; 5(10):7972-7. PubMed ID: 21902187
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of Silicon Nanocrystal Oxidation on the Nonmetallic Growth of Carbon Nanotubes.
    Rocks C; Mitra S; Macias-Montero M; Maguire P; Svrcek V; Levchenko I; Ostrikov K; Mariotti D
    ACS Appl Mater Interfaces; 2016 Jul; 8(29):19012-23. PubMed ID: 27362537
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and oxidation of luminescent silicon nanocrystals from silicon tetrachloride by very high frequency nonthermal plasma.
    Gresback R; Nozaki T; Okazaki K
    Nanotechnology; 2011 Jul; 22(30):305605. PubMed ID: 21709349
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of boron doping on the structural and optical properties of silicon nanocrystals in a silicon dioxide matrix.
    Hao XJ; Cho EC; Flynn C; Shen YS; Conibeer G; Green MA
    Nanotechnology; 2008 Oct; 19(42):424019. PubMed ID: 21832679
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microwave-assisted synthesis of pt nanocrystals and deposition on carbon nanotubes in ionic liquids.
    Liu Z; Sun Z; Han B; Zhang J; Huang J; Du J; Miao S
    J Nanosci Nanotechnol; 2006 Jan; 6(1):175-9. PubMed ID: 16573091
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photoassisted tuning of silicon nanocrystal photoluminescence.
    Choi J; Wang NS; Reipa V
    Langmuir; 2007 Mar; 23(6):3388-94. PubMed ID: 17295527
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coating carbon nanotubes with colloidal nanocrystals by combining an electrospray technique with directed assembly using an electrostatic field.
    Mao S; Lu G; Chen J
    Nanotechnology; 2008 Nov; 19(45):455610. PubMed ID: 21832787
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic nanocrystal response and high temperature growth of carbon nanotube-ferroelectric hybrid nanostructure.
    Kumar A; Scott JF; Katiyar RS
    Nanoscale; 2014 Jan; 6(2):1064-70. PubMed ID: 24292241
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Brightly luminescent organically capped silicon nanocrystals fabricated at room temperature and atmospheric pressure.
    Kůsová K; Cibulka O; Dohnalová K; Pelant I; Valenta J; Fucíková A; Zídek K; Lang J; Englich J; Matejka P; Stepánek P; Bakardjieva S
    ACS Nano; 2010 Aug; 4(8):4495-504. PubMed ID: 20690596
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonthermal plasma synthesized freestanding silicon-germanium alloy nanocrystals.
    Pi XD; Kortshagen U
    Nanotechnology; 2009 Jul; 20(29):295602. PubMed ID: 19567968
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploration of organic acid chain length on water-soluble silicon quantum dot surfaces.
    Clark RJ; Dang MK; Veinot JG
    Langmuir; 2010 Oct; 26(19):15657-64. PubMed ID: 20815392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaporation and deposition of alkyl-capped silicon nanocrystals in ultrahigh vacuum.
    Chao Y; Siller L; Krishnamurthy S; Coxon PR; Bangert U; Gass M; Kjeldgaard L; Patole SN; Lie LH; O'Farrell N; Alsop TA; Houlton A; Horrocks BR
    Nat Nanotechnol; 2007 Aug; 2(8):486-9. PubMed ID: 18654345
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pseudo-direct bandgap transitions in silicon nanocrystals: effects on optoelectronics and thermoelectrics.
    Singh V; Yu Y; Sun QC; Korgel B; Nagpal P
    Nanoscale; 2014 Dec; 6(24):14643-7. PubMed ID: 25367148
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical absorption and emission of nitrogen-doped silicon nanocrystals.
    Pi X; Chen X; Ma Y; Yang D
    Nanoscale; 2011 Nov; 3(11):4584-8. PubMed ID: 21989790
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Silicon Nanocrystals and Silicon-Polymer Hybrids: Synthesis, Surface Engineering, and Applications.
    Dasog M; Kehrle J; Rieger B; Veinot JG
    Angew Chem Int Ed Engl; 2016 Feb; 55(7):2322-39. PubMed ID: 26607409
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon nanotube-nanocrystal heterostructures fabricated by electrophoretic deposition.
    Mahajan SV; Hasan SA; Cho J; Shaffer MS; Boccaccini AR; Dickerson JH
    Nanotechnology; 2008 May; 19(19):195301. PubMed ID: 21825710
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integration of a carbon nanotube based electrode in silicon microtechnology to fabricate electrochemical transducers.
    Luais E; Boujtita M; Gohier A; Tailleur A; Casimirius S; Djouadi MA; Granier A; Tessier PY
    Nanotechnology; 2008 Oct; 19(43):435502. PubMed ID: 21832696
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct attachment of well-aligned single-walled carbon nanotube architectures to silicon (100) surfaces: a simple approach for device assembly.
    Yu J; Shapter JG; Quinton JS; Johnston MR; Beattie DA
    Phys Chem Chem Phys; 2007 Jan; 9(4):510-20. PubMed ID: 17216067
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.