These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 21828715)

  • 1. Computational modelling of a non-viscous fluid flow in a multi-walled carbon nanotube modelled as a Timoshenko beam.
    Khosravian N; Rafii-Tabar H
    Nanotechnology; 2008 Jul; 19(27):275703. PubMed ID: 21828715
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of continuum mechanics models in predicting buckling strains of single-walled carbon nanotubes.
    Zhang YY; Wang CM; Duan WH; Xiang Y; Zong Z
    Nanotechnology; 2009 Sep; 20(39):395707. PubMed ID: 19724103
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comment on 'Vibration analysis of fluid-conveying double-walled carbon nanotubes based on nonlocal elastic theory'.
    Tounsi A; Heireche H; Benzair A; Mechab I
    J Phys Condens Matter; 2009 Nov; 21(44):448001. PubMed ID: 21832479
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flow-induced dynamics of carbon nanotubes.
    Chen C; Xu Z
    Nanoscale; 2011 Oct; 3(10):4383-8. PubMed ID: 21909582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The constitutive relation and small scale parameter of nonlocal continuum mechanics for modelling carbon nanotubes.
    Wang Q; Wang CM
    Nanotechnology; 2007 Feb; 18(7):075702. PubMed ID: 21730510
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigations on the buckling and dynamics of diving-inspired systems when entering water.
    Zimmerman S; Abdelkefi A
    Bioinspir Biomim; 2020 Mar; 15(3):036015. PubMed ID: 32066135
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Terahertz Wave Propagation in a Nanotube Conveying Fluid Taking into Account Surface Effect.
    Zhang YW; Yang TZ; Zang J; Fang B
    Materials (Basel); 2013 Jun; 6(6):2393-2399. PubMed ID: 28809279
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal vibration of a single-walled carbon nanotube predicted by semiquantum molecular dynamics.
    Liu R; Wang L
    Phys Chem Chem Phys; 2015 Feb; 17(7):5194-201. PubMed ID: 25599883
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Drag on a nanotube in uniform liquid argon flow.
    Tang W; Advani SG
    J Chem Phys; 2006 Nov; 125(17):174706. PubMed ID: 17100460
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scale effect on wave propagation of double-walled carbon nanotubes with initial axial loading.
    Heireche H; Tounsi A; Benzair A
    Nanotechnology; 2008 May; 19(18):185703. PubMed ID: 21825699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vibration analysis of fluid-conveying double-walled carbon nanotubes based on nonlocal elastic theory.
    Lee HL; Chang WJ
    J Phys Condens Matter; 2009 Mar; 21(11):115302. PubMed ID: 21693915
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bending, longitudinal and torsional wave transmission on Euler-Bernoulli and Timoshenko beams with high propagation losses.
    Wang X; Hopkins C
    J Acoust Soc Am; 2016 Oct; 140(4):2312. PubMed ID: 27794356
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vibration Analysis of Fluid Conveying Carbon Nanotubes Based on Nonlocal Timoshenko Beam Theory by Spectral Element Method.
    Yi X; Li B; Wang Z
    Nanomaterials (Basel); 2019 Dec; 9(12):. PubMed ID: 31847397
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The precise self-assembly of individual carbon nanotubes using magnetic capturing and fluidic alignment.
    Shim JS; Yun YH; Rust MJ; Do J; Shanov V; Schulz MJ; Ahn CH
    Nanotechnology; 2009 Aug; 20(32):325607. PubMed ID: 19620765
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Nonlinear Nonlocal Thermoelasticity Euler-Bernoulli Beam Theory and Its Application to Single-Walled Carbon Nanotubes.
    Huang K; Xu W
    Nanomaterials (Basel); 2023 Feb; 13(4):. PubMed ID: 36839089
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Free vibration analysis of Timoshenko pipes with fixed boundary conditions conveying high velocity fluid.
    Tan X; Tang YQ
    Heliyon; 2023 Apr; 9(4):e14716. PubMed ID: 37009242
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical study of the structures and electronic properties of all-surface KI and CsI nanocrystals encapsulated in single walled carbon nanotubes.
    Bichoutskaia E; Pyper NC
    J Chem Phys; 2008 Oct; 129(15):154701. PubMed ID: 19045212
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoscale fluid-structure interaction: flow resistance and energy transfer between water and carbon nanotubes.
    Chen C; Ma M; Jin K; Liu JZ; Shen L; Zheng Q; Xu Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 2):046314. PubMed ID: 22181268
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accurate modeling of buckling of single- and double-walled carbon nanotubes based on shell theories.
    Kulathunga DD; Ang KK; Reddy JN
    J Phys Condens Matter; 2009 Oct; 21(43):435301. PubMed ID: 21832433
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanics of nanowire/nanotube in-surface buckling on elastomeric substrates.
    Xiao J; Ryu SY; Huang Y; Hwang KC; Paik U; Rogers JA
    Nanotechnology; 2010 Feb; 21(8):85708. PubMed ID: 20097981
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.