These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 21828715)
21. Comparison of the Natural Vibration Frequencies of Timoshenko and Bernoulli Periodic Beams. Domagalski Ł Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947223 [TBL] [Abstract][Full Text] [Related]
22. Free vibration analysis of DWCNTs using CDM and Rayleigh-Schmidt based on Nonlocal Euler-Bernoulli beam theory. De Rosa MA; Lippiello M ScientificWorldJournal; 2014; 2014():194529. PubMed ID: 24715807 [TBL] [Abstract][Full Text] [Related]
23. Wettability and confinement size effects on stability of water conveying nanotubes. Shaat M; Javed U; Faroughi S Sci Rep; 2020 Oct; 10(1):17167. PubMed ID: 33051583 [TBL] [Abstract][Full Text] [Related]
24. Thermal vibration of single-walled carbon nanotubes with quantum effects. Wang L; Hu H Proc Math Phys Eng Sci; 2014 Aug; 470(2168):20140087. PubMed ID: 25104907 [TBL] [Abstract][Full Text] [Related]
25. Integrated single-walled carbon nanotube/microfluidic devices for the study of the sensing mechanism of nanotube sensors. Fu Q; Liu J J Phys Chem B; 2005 Jul; 109(28):13406-8. PubMed ID: 16852676 [TBL] [Abstract][Full Text] [Related]
26. The vibrational and buckling behaviors of piezoelectric nanobeams with surface effects. Yan Z; Jiang LY Nanotechnology; 2011 Jun; 22(24):245703. PubMed ID: 21508448 [TBL] [Abstract][Full Text] [Related]
27. Analytical and computational studies of the nonlinear vibrations of SWCNTs embedded in viscous elastic matrix using KBM method. Tyagi M; Khan A; Husain M; Husain S Chaos; 2019 Feb; 29(2):023134. PubMed ID: 30823744 [TBL] [Abstract][Full Text] [Related]
28. Beam Theory of Thermal-Electro-Mechanical Coupling for Single-Wall Carbon Nanotubes. Huang K; Yao J Nanomaterials (Basel); 2021 Apr; 11(4):. PubMed ID: 33916340 [TBL] [Abstract][Full Text] [Related]
29. Eigenfunction expansion method for peristaltic flow of hybrid nanofluid flow having single-walled carbon nanotube and multi-walled carbon nanotube in a wavy rectangular duct. Nadeem S; Qadeer S; Akhtar S; El Shafey AM; Issakhov A Sci Prog; 2021 Oct; 104(4):368504211050292. PubMed ID: 34738839 [TBL] [Abstract][Full Text] [Related]
30. Variational principles for transversely vibrating multiwalled carbon nanotubes based on nonlocal Euler-Bernoulli beam model. Adali S Nano Lett; 2009 May; 9(5):1737-41. PubMed ID: 19344117 [TBL] [Abstract][Full Text] [Related]
31. High brightness electron beam from a multi-walled carbon nanotube. de Jonge N; Lamy Y; Schoots K; Oosterkamp TH Nature; 2002 Nov; 420(6914):393-5. PubMed ID: 12459778 [TBL] [Abstract][Full Text] [Related]
32. Controlling nanotube dimensions: correlation between composition, diameter, and internal energy of single-walled mixed oxide nanotubes. Konduri S; Mukherjee S; Nair S ACS Nano; 2007 Dec; 1(5):393-402. PubMed ID: 19206659 [TBL] [Abstract][Full Text] [Related]
33. Virus sensor based on single-walled carbon nanotube: improved theory incorporating surface effects. Elishakoff I; Challamel N; Soret C; Bekel Y; Gomez T Philos Trans A Math Phys Eng Sci; 2013 Jun; 371(1993):20120424. PubMed ID: 23690635 [TBL] [Abstract][Full Text] [Related]
34. Dip-pen nanolithography of electrical contacts to single-walled carbon nanotubes. Wang WM; LeMieux MC; Selvarasah S; Dokmeci MR; Bao Z ACS Nano; 2009 Nov; 3(11):3543-51. PubMed ID: 19852486 [TBL] [Abstract][Full Text] [Related]
35. High-temperature thermal stability and axial compressive properties of a coaxial carbon nanotube inside a boron nitride nanotube. Liew KM; Yuan J Nanotechnology; 2011 Feb; 22(8):085701. PubMed ID: 21242624 [TBL] [Abstract][Full Text] [Related]
36. Evidence of multi-walled carbon nanotube fragmentation induced by sonication during nanotube encapsulation via bulk-suspension polymerization. Zaragoza-Contreras EA; Lozano-Rodríguez ED; Román-Aguirre M; Antunez-Flores W; Hernández-Escobar CA; Flores-Gallardo SG; Aguilar-Elguezabal A Micron; 2009; 40(5-6):621-7. PubMed ID: 19299150 [TBL] [Abstract][Full Text] [Related]
37. Molecular dynamics analysis on buckling of defective carbon nanotubes. Kulathunga DD; Ang KK; Reddy JN J Phys Condens Matter; 2010 Sep; 22(34):345301. PubMed ID: 21403253 [TBL] [Abstract][Full Text] [Related]
38. Nonlocal continuum model and molecular dynamics for free vibration of single-walled carbon nanotubes. Hu YG; Liew KM; Wang Q J Nanosci Nanotechnol; 2011 Dec; 11(12):10401-7. PubMed ID: 22408916 [TBL] [Abstract][Full Text] [Related]
39. Dynamic evolution of supported metal nanocatalyst/carbon structure during single-walled carbon nanotube growth. Gómez-Gualdrón DA; McKenzie GD; Alvarado JF; Balbuena PB ACS Nano; 2012 Jan; 6(1):720-35. PubMed ID: 22133430 [TBL] [Abstract][Full Text] [Related]
40. The role of activation energy and reduced viscosity on the enhancement of water flow through carbon nanotubes. Babu JS; Sathian SP J Chem Phys; 2011 May; 134(19):194509. PubMed ID: 21599075 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]