These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 21828743)

  • 1. The effect of carbon nanotube dimensions and dispersion on the fatigue behavior of epoxy nanocomposites.
    Zhang W; Picu RC; Koratkar N
    Nanotechnology; 2008 Jul; 19(28):285709. PubMed ID: 21828743
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced mechanical properties of nanocomposites at low graphene content.
    Rafiee MA; Rafiee J; Wang Z; Song H; Yu ZZ; Koratkar N
    ACS Nano; 2009 Dec; 3(12):3884-90. PubMed ID: 19957928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of carbon nanotube dispersion on glass transition in cross-linked epoxy-carbon nanotube nanocomposites: role of interfacial interactions.
    Khare KS; Khare R
    J Phys Chem B; 2013 Jun; 117(24):7444-54. PubMed ID: 23691970
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fracture toughness and fatigue crack propagation rate of short fiber reinforced epoxy composites for analogue cortical bone.
    Chong AC; Miller F; Buxton M; Friis EA
    J Biomech Eng; 2007 Aug; 129(4):487-93. PubMed ID: 17655469
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High volume fraction carbon nanotube-epoxy composites.
    Spitalsky Z; Tsoukleri G; Tasis D; Krontiras C; Georga SN; Galiotis C
    Nanotechnology; 2009 Oct; 20(40):405702. PubMed ID: 19738313
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synergistic Effect of Multi-Walled Carbon Nanotubes and Graphene Nanoplatelets on the Monotonic and Fatigue Properties of Uncracked and Cracked Epoxy Composites.
    Jen YM; Huang JC; Zheng KY
    Polymers (Basel); 2020 Aug; 12(9):. PubMed ID: 32842502
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interface toughness of carbon nanotube reinforced epoxy composites.
    Ganesan Y; Peng C; Lu Y; Loya PE; Moloney P; Barrera E; Yakobson BI; Tour JM; Ballarini R; Lou J
    ACS Appl Mater Interfaces; 2011 Feb; 3(2):129-34. PubMed ID: 21214196
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical Properties of the Carbon Nanotube Modified Epoxy-Carbon Fiber Unidirectional Prepreg Laminates.
    Bakis G; Wendel JF; Zeiler R; Aksit A; Häublein M; Demleitner M; Benra J; Forero S; Schütz W; Altstädt V
    Polymers (Basel); 2021 Mar; 13(5):. PubMed ID: 33801511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultralow-Carbon Nanotube-Toughened Epoxy: The Critical Role of a Double-Layer Interface.
    Liu J; Chen C; Feng Y; Liao Y; Ye Y; Xie X; Mai YW
    ACS Appl Mater Interfaces; 2018 Jan; 10(1):1204-1216. PubMed ID: 29235354
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Viscoelasticity in carbon nanotube composites.
    Suhr J; Koratkar N; Keblinski P; Ajayan P
    Nat Mater; 2005 Feb; 4(2):134-7. PubMed ID: 15640807
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temperature-Dependent Synergistic Effect of Multi-Walled Carbon Nanotubes and Graphene Nanoplatelets on the Tensile Quasi-Static and Fatigue Properties of Epoxy Nanocomposites.
    Jen YM; Chang HH; Lu CM; Liang SY
    Polymers (Basel); 2020 Dec; 13(1):. PubMed ID: 33379328
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Individual dispersion of carbon nanotubes in epoxy via a novel dispersion-curing approach using ionic liquids.
    Hameed N; Salim NV; Hanley TL; Sona M; Fox BL; Guo Q
    Phys Chem Chem Phys; 2013 Jul; 15(28):11696-703. PubMed ID: 23752343
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of epoxy creep using graphene.
    Zandiatashbar A; Picu CR; Koratkar N
    Small; 2012 Jun; 8(11):1676-82. PubMed ID: 22378720
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fatigue crack growth in epoxy polymer nanocomposites.
    Kinloch AJ; Jones R; Michopoulos JG
    Philos Trans A Math Phys Eng Sci; 2021 Aug; 379(2203):20200436. PubMed ID: 34148424
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of ultrasonic assisted triangular lattice like arranged dispersion of nanoparticles on physical and mechanical properties of epoxy-TiO
    Goyat MS; Ghosh PK
    Ultrason Sonochem; 2018 Apr; 42():141-154. PubMed ID: 29429655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural and electronic properties of carbon nanotube-reinforced epoxy resins.
    Suggs K; Wang XQ
    Nanoscale; 2010 Mar; 2(3):385-8. PubMed ID: 20644820
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of dynamic rheological behavior to estimate the dispersion of carbon nanotubes in carbon nanotube/polymer composites.
    Zhang Q; Fang F; Zhao X; Li Y; Zhu M; Chen D
    J Phys Chem B; 2008 Oct; 112(40):12606-11. PubMed ID: 18785703
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Silane treatment of carbon nanotubes and its effect on the tribological behavior of carbon nanotube/epoxy nanocomposites.
    Lee JH; Rhee KY
    J Nanosci Nanotechnol; 2009 Dec; 9(12):6948-52. PubMed ID: 19908704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coarse-grained molecular simulation of the effects of carbon nanotube dispersion on the mechanics of semicrystalline polymer nanocomposites.
    Wu C; Wu R; Tam LH
    Nanotechnology; 2021 May; 32(32):. PubMed ID: 33794512
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of Dispersing Multiwalled Carbon Nanotubes and Graphene Nanoplatelets Hybrids in the Matrix on the Flexural Fatigue Properties of Carbon/Epoxy Composites.
    Jen YM; Ni WL
    Polymers (Basel); 2022 Feb; 14(5):. PubMed ID: 35267743
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.