These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 21828745)

  • 1. The fabrication and thermal expansion properties of 4H-Ag nanowire arrays in porous anodic alumina templates.
    Zhou Y; Fei GT; Cui P; Wu B; Wang B; Zhang LD
    Nanotechnology; 2008 Jul; 19(28):285711. PubMed ID: 21828745
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal properties of bi nanowire arrays with different orientations and diameters.
    Zhu Y; Dou X; Huang X; Li L; Li G
    J Phys Chem B; 2006 Dec; 110(51):26189-93. PubMed ID: 17181275
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of annealing temperature on magnetic property and structure of amorphous Co49Pt51 alloy nanowire arrays prepared by direct-current electrodeposition.
    Li H; Xu CL; Zhao GY; Li HL
    J Phys Chem B; 2005 Mar; 109(9):3759-63. PubMed ID: 16851422
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tuning the crystallinity of thermoelectric Bi(2)Te(3) nanowire arrays grown by pulsed electrodeposition.
    Lee J; Farhangfar S; Lee J; Cagnon L; Scholz R; Gösele U; Nielsch K
    Nanotechnology; 2008 Sep; 19(36):365701. PubMed ID: 21828882
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of high-temperature annealing on optical properties of porous anodic alumina formed in oxalic acid.
    Li Z; Huang K
    Luminescence; 2007; 22(4):355-61. PubMed ID: 17471474
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct electrodeposition of porous gold nanowire arrays for biosensing applications.
    Zhang X; Li D; Bourgeois L; Wang H; Webley PA
    Chemphyschem; 2009 Feb; 10(2):436-41. PubMed ID: 19035391
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal Contraction of Electrodeposited Bi/BiSb Superlattice Nanowires.
    Dou X; Li G; Huang X; Li L
    Nanoscale Res Lett; 2010 Apr; 5(7):1118-23. PubMed ID: 20596460
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Size-dependent orientation growth of large-area ordered Ni nanowire arrays.
    Wang XW; Fei GT; Xu XJ; Jin Z; Zhang LD
    J Phys Chem B; 2005 Dec; 109(51):24326-30. PubMed ID: 16375431
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diameter- and current-density-dependent growth orientation of hexagonal CdSe nanowire arrays via electrodeposition.
    Sun H; Li X; Chen Y; Guo D; Xie Y; Li W; Liu B; Zhang X
    Nanotechnology; 2009 Oct; 20(42):425603. PubMed ID: 19779238
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication and characterization of single-crystalline ZnTe nanowire arrays.
    Li L; Yang Y; Huang X; Li G; Zhang L
    J Phys Chem B; 2005 Jun; 109(25):12394-8. PubMed ID: 16852533
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication and electrical properties of a Cu-tetracyanoquinodimethane nanowire array in a porous anodic alumina template.
    Shen H; Zheng K; Li J; Sun D; Chen G
    Nanotechnology; 2008 Jan; 19(1):015305. PubMed ID: 21730531
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Template electrodeposition of single-phase p- and n-type copper indium diselenide (CuInSe2) nanowire arrays.
    Hernández-Pagán EA; Wang W; Mallouk TE
    ACS Nano; 2011 Apr; 5(4):3237-41. PubMed ID: 21370921
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Topotaxial fabrication of vertical Aux Ag1-x nanowire arrays: plasmon-active in the blue region and corrosion resistant.
    Lee H; Yoo Y; Kang T; In J; Seo MK; Kim B
    Small; 2012 May; 8(10):1527-33. PubMed ID: 22431295
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Growth and optical properties of silver nanostructures obtained on connected anodic aluminum oxide templates.
    Giallongo G; Durante C; Pilot R; Garoli D; Bozio R; Romanato F; Gennaro A; Rizzi GA; Granozzi G
    Nanotechnology; 2012 Aug; 23(32):325604. PubMed ID: 22825487
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural study on Ni nanowires in an anodic alumina membrane by using in situ heating extended x-ray absorption fine structure and x-ray diffraction techniques.
    Cai Q; Zhang J; Chen X; Chen Z; Wang W; Mo G; Wu Z; Zhang L; Pan W
    J Phys Condens Matter; 2008 Mar; 20(11):115205. PubMed ID: 21694222
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microstructural effects on the magnetic and magneto-transport properties of electrodeposited Ni nanowire arrays.
    Chen SF; Wei HH; Liu CP; Hsu CY; Huang JC
    Nanotechnology; 2010 Oct; 21(42):425602. PubMed ID: 20858926
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Large-scale fabrication of single crystalline tin nanowire arrays.
    Luo B; Yang D; Liang M; Zhi L
    Nanoscale; 2010 Sep; 2(9):1661-4. PubMed ID: 20820696
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pulsed electrodeposition of single-crystalline Bi2Te3 nanowire arrays.
    Li L; Yang Y; Huang X; Li G; Zhang L
    Nanotechnology; 2006 Mar; 17(6):1706-12. PubMed ID: 26558581
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Patterned metal nanowire arrays from photolithographically-modified templates.
    Li F; Zhu M; Liu C; Zhou WL; Wiley JB
    J Am Chem Soc; 2006 Oct; 128(41):13342-3. PubMed ID: 17031931
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrodeposition mechanism of palladium nanotube and nanowire arrays.
    Cherevko S; Fu J; Kulyk N; Cho SM; Haam S; Chung CH
    J Nanosci Nanotechnol; 2009 May; 9(5):3154-9. PubMed ID: 19452983
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.