These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 21828773)

  • 1. Evidence for enhanced thermal conduction through percolating structures in nanofluids.
    Philip J; Shima PD; Raj B
    Nanotechnology; 2008 Jul; 19(30):305706. PubMed ID: 21828773
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlled synthesis and size-dependent thermal conductivity of Fe3O4 magnetic nanofluids.
    Wang B; Wang B; Wei P; Wang X; Lou W
    Dalton Trans; 2012 Jan; 41(3):896-9. PubMed ID: 22086086
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Beyond the Maxwell limit: thermal conduction in nanofluids with percolating fluid structures.
    Eapen J; Li J; Yip S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Dec; 76(6 Pt 1):062501. PubMed ID: 18233882
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transport properties of alumina nanofluids.
    Wong KF; Kurma T
    Nanotechnology; 2008 Aug; 19(34):345702. PubMed ID: 21730657
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting the effective thermal conductivity of carbon nanotube based nanofluids.
    Venkata Sastry NN; Bhunia A; Sundararajan T; Das SK
    Nanotechnology; 2008 Feb; 19(5):055704. PubMed ID: 21817618
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studies on the role of unsaturation in the fatty acid surfactant molecule on the thermal conductivity of magnetite nanofluids.
    Lenin R; Joy PA
    J Colloid Interface Sci; 2017 Nov; 506():162-168. PubMed ID: 28735189
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Frequency dependent enhancement of heat transport in a nanofluid with ZnO nanoparticles.
    Neogy RK; Raychaudhuri AK
    Nanotechnology; 2009 Jul; 20(30):305706. PubMed ID: 19584421
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal conductivity and particle agglomeration in alumina nanofluids: experiment and theory.
    Timofeeva EV; Gavrilov AN; McCloskey JM; Tolmachev YV; Sprunt S; Lopatina LM; Selinger JV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Dec; 76(6 Pt 1):061203. PubMed ID: 18233838
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal properties of nanofluids.
    Philip J; Shima PD
    Adv Colloid Interface Sci; 2012 Nov; 183-184():30-45. PubMed ID: 22921845
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanistic insights into surface contribution towards heat transfer in a nanofluid.
    Singh A; Lenin R; Bari NK; Bakli C; Bera C
    Nanoscale Adv; 2020 Aug; 2(8):3507-3513. PubMed ID: 36134284
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental investigation of the thermal transport properties of a carbon nanohybrid dispersed nanofluid.
    Baby TT; Ramaprabhu S
    Nanoscale; 2011 May; 3(5):2208-14. PubMed ID: 21455535
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced thermal conductivities of nanofluids containing graphene oxide nanosheets.
    Yu W; Xie H; Bao D
    Nanotechnology; 2010 Feb; 21(5):055705. PubMed ID: 20023318
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Review on thermal properties of nanofluids: Recent developments.
    Angayarkanni SA; Philip J
    Adv Colloid Interface Sci; 2015 Nov; 225():146-76. PubMed ID: 26391519
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An effective thermal conductivity model of nanofluids with a cubical arrangement of spherical particles.
    Yu W; Choi SU
    J Nanosci Nanotechnol; 2005 Apr; 5(4):580-6. PubMed ID: 16004122
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ionic liquid-based stable nanofluids containing gold nanoparticles.
    Wang B; Wang X; Lou W; Hao J
    J Colloid Interface Sci; 2011 Oct; 362(1):5-14. PubMed ID: 21723564
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature-dependent effect of percolation and Brownian motion on the thermal conductivity of TiO2-ethanol nanofluids.
    Li CC; Hau NY; Wang Y; Soh AK; Feng SP
    Phys Chem Chem Phys; 2016 Jun; 18(22):15363-8. PubMed ID: 27212639
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the thermal conductivity of gold nanoparticle colloids.
    Shalkevich N; Escher W; Bürgi T; Michel B; Si-Ahmed L; Poulikakos D
    Langmuir; 2010 Jan; 26(2):663-70. PubMed ID: 19681632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancements of thermal conductivities with Cu, CuO, and carbon nanotube nanofluids and application of MWNT/water nanofluid on a water chiller system.
    Liu M; Lin MC; Wang C
    Nanoscale Res Lett; 2011 Apr; 6(1):297. PubMed ID: 21711787
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal Conductivity and Stability of Hydrocarbon-Based Nanofluids with Palladium Nanoparticles Dispersed by Modified Hyperbranched Polyglycerol.
    Qin X; Yang S; Chen Y; Qin X; Zhao J; Fang W; Luo D
    ACS Omega; 2020 Dec; 5(48):31156-31163. PubMed ID: 33324824
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intriguingly high thermal conductivity increment for CuO nanowires contained nanofluids with low viscosity.
    Zhu D; Wang L; Yu W; Xie H
    Sci Rep; 2018 Mar; 8(1):5282. PubMed ID: 29588467
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.