These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 21828825)

  • 1. Two-dimensional dopant profiling by electrostatic force microscopy using carbon nanotube modified cantilevers.
    Chin SC; Chang YC; Hsu CC; Lin WH; Wu CI; Chang CS; Tsong TT; Woon WY; Lin LT; Tao HJ
    Nanotechnology; 2008 Aug; 19(32):325703. PubMed ID: 21828825
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The fabrication of carbon nanotube probes utilizing ultra-high vacuum transmission electron microscopy.
    Chin SC; Chang YC; Chang CS
    Nanotechnology; 2009 Jul; 20(28):285307. PubMed ID: 19546489
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lattice-resolved frictional pattern probed by tailored carbon nanotubes.
    Lai WC; Chin SC; Chang YC; Chen LY; Chang CS
    Nanotechnology; 2010 Feb; 21(5):055702. PubMed ID: 20023321
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adhesion, friction and wear on the nanoscale of MWNT tips and SWNT and MWNT arrays.
    Bhushan B; Galasso B; Bignardi C; Nguyen CV; Dai L; Qu L
    Nanotechnology; 2008 Mar; 19(12):125702. PubMed ID: 21817743
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spray deposition of steam treated and functionalized single-walled and multi-walled carbon nanotube films for supercapacitors.
    Zhao X; Chu BT; Ballesteros B; Wang W; Johnston C; Sykes JM; Grant PS
    Nanotechnology; 2009 Feb; 20(6):065605. PubMed ID: 19417393
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electric field and tip geometry effects on dielectrophoretic growth of carbon nanotube nanofibrils on scanning probes.
    Wei H; Craig A; Huey BD; Papadimitrakopoulos F; Marcus HL
    Nanotechnology; 2008 Nov; 19(45):455303. PubMed ID: 21832768
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Why nano-oxidation with carbon nanotube probes is so stable: II. Bending behaviour of CNT probes during nano-oxidation.
    Kuramochi H; Tokizaki T; Ando K; Yokoyama H; Dagata JA
    Nanotechnology; 2007 Apr; 18(13):135704. PubMed ID: 21730389
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atomic force microscopy measurements of peptide-wrapped single-walled carbon nanotube diameters.
    Poenitzsch VZ; Musselman IH
    Microsc Microanal; 2006 Jun; 12(3):221-7. PubMed ID: 17481358
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional evaluation of an independent multi-walled carbon nanotube probe by tomography with high-resolution transmission electron microscope.
    Tanigaki T; Hidaka K; Hirooka M; Nakata T
    J Electron Microsc (Tokyo); 2011; 60(1):19-24. PubMed ID: 20943676
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of carbon nanotube AFM probes using the Langmuir-Blodgett technique.
    Lee JH; Kang WS; Choi BS; Choi SW; Kim JH
    Ultramicroscopy; 2008 Sep; 108(10):1163-7. PubMed ID: 18572322
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High yield assembly and electron transport investigation of semiconducting-rich local-gated single-walled carbon nanotube field effect transistors.
    Kormondy KJ; Stokes P; Khondaker SI
    Nanotechnology; 2011 Oct; 22(41):415201. PubMed ID: 21914942
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Local-gated single-walled carbon nanotube field effect transistors assembled by AC dielectrophoresis.
    Stokes P; Khondaker SI
    Nanotechnology; 2008 Apr; 19(17):175202. PubMed ID: 21825663
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Observation of diameter dependent carrier distribution in nanowire-based transistors.
    Schulze A; Hantschel T; Eyben P; Verhulst AS; Rooyackers R; Vandooren A; Mody J; Nazir A; Leonelli D; Vandervorst W
    Nanotechnology; 2011 May; 22(18):185701. PubMed ID: 21415466
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast and reliable method of conductive carbon nanotube-probe fabrication for scanning probe microscopy.
    Dremov V; Fedoseev V; Fedorov P; Grebenko A
    Rev Sci Instrum; 2015 May; 86(5):053703. PubMed ID: 26026528
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D finite element analysis of electrostatic deflection of commercial and FIB-modified cantilevers for electric and Kelvin force microscopy: I. Triangular shaped cantilevers with symmetric pyramidal tips.
    Valdrè G; Moro D
    Nanotechnology; 2008 Oct; 19(40):405501. PubMed ID: 21832617
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrical tomography using atomic force microscopy and its application towards carbon nanotube-based interconnects.
    Schulze A; Hantschel T; Dathe A; Eyben P; Ke X; Vandervorst W
    Nanotechnology; 2012 Aug; 23(30):305707. PubMed ID: 22781880
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A study on the mechanical and electrical reliability of individual carbon nanotube field emission cathodes.
    Ribaya BP; Leung J; Brown P; Rahman M; Nguyen CV
    Nanotechnology; 2008 May; 19(18):185201. PubMed ID: 21825685
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct surface force measurement in water using a nanosize colloidal probe technique.
    Cho JM; Sigmund WM
    J Colloid Interface Sci; 2002 Jan; 245(2):405-7. PubMed ID: 16290376
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-resolution noncontact atomic force microscopy.
    Pérez R; García R; Schwarz U
    Nanotechnology; 2009 Jul; 20(26):260201. PubMed ID: 19531843
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Large area scanning probe microscope in ultra-high vacuum demonstrated for electrostatic force measurements on high-voltage devices.
    Gysin U; Glatzel T; Schmölzer T; Schöner A; Reshanov S; Bartolf H; Meyer E
    Beilstein J Nanotechnol; 2015; 6():2485-97. PubMed ID: 26885461
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.