These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 21828846)

  • 1. Tuning the surface morphology in self-organized ion beam nanopatterning of Si(001) via metal incorporation: from holes to dots.
    Sánchez-García JA; Vázquez L; Gago R; Redondo-Cubero A; Albella JM; Czigány Z
    Nanotechnology; 2008 Sep; 19(35):355306. PubMed ID: 21828846
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of nanohole/nanodot patterns on Si(001) by ion beam sputtering with simultaneous metal incorporation.
    Sánchez-García JA; Gago R; Caillard R; Redondo-Cubero A; Martin-Gago JA; Palomares FJ; Fernández M; Vázquez L
    J Phys Condens Matter; 2009 Jun; 21(22):224009. PubMed ID: 21715747
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of metal co-deposition on silicon nanodot patterning dynamics during ion-beam sputtering.
    Gago R; Redondo-Cubero A; Palomares FJ; Vázquez L
    Nanotechnology; 2014 Oct; 25(41):415301. PubMed ID: 25248515
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface morphology of molybdenum silicide films upon low-energy ion beam sputtering.
    Gago R; Jaafar M; Palomares FJ
    J Phys Condens Matter; 2018 Jul; 30(26):264003. PubMed ID: 29762135
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ion beam sputtering nanopatterning of thin metal films: the synergism of kinetic self-organization and coarsening.
    Stepanova M; Dew SK
    J Phys Condens Matter; 2009 Jun; 21(22):224014. PubMed ID: 21715752
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-organised silicide nanodot patterning by medium-energy ion beam sputtering of Si(100): local correlation between the morphology and metal content.
    Redondo-Cubero A; Galiana B; Lorenz K; Palomares FJ; Bahena D; Ballesteros C; Hernandez-Calderón I; Vázquez L
    Nanotechnology; 2016 Nov; 27(44):444001. PubMed ID: 27670245
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Is keV ion-induced pattern formation on Si(001) caused by metal impurities?
    Macko S; Frost F; Ziberi B; Förster DF; Michely T
    Nanotechnology; 2010 Feb; 21(8):85301. PubMed ID: 20097973
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly ordered nanopatterns on Ge and Si surfaces by ion beam sputtering.
    Ziberi B; Cornejo M; Frost F; Rauschenbach B
    J Phys Condens Matter; 2009 Jun; 21(22):224003. PubMed ID: 21715742
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Topography evolution of 500 keV Ar(4+) ion beam irradiated InP(100) surfaces - formation of self-organized In-rich nano-dots and scaling laws.
    Sulania I; Agarwal DC; Kumar M; Kumar S; Kumar P
    Phys Chem Chem Phys; 2016 Jul; 18(30):20363-70. PubMed ID: 27400760
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanopatterning by multiple-ion-beam sputtering.
    Joe M; Kim JH; Choi C; Kahng B; Kim JS
    J Phys Condens Matter; 2009 Jun; 21(22):224011. PubMed ID: 21715749
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of ion-irradiation-induced nanodot structures on InP surfaces by atom probe tomography.
    Gnaser H; Radny T
    Ultramicroscopy; 2015 Dec; 159 Pt 2():232-9. PubMed ID: 25980895
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Independence of interrupted coarsening on initial system order: ion-beam nanopatterning of amorphous versus crystalline silicon targets.
    Muñoz-García J; Gago R; Cuerno R; Sánchez-García JA; Redondo-Cubero A; Castro M; Vázquez L
    J Phys Condens Matter; 2012 Sep; 24(37):375302. PubMed ID: 22913935
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ion-erosion induced surface nanoporosity and nanotopography on Si.
    Süle P
    J Chem Phys; 2011 Jun; 134(24):244706. PubMed ID: 21721656
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-organizing nanodot structures on InP surfaces evolving under low-energy ion irradiation: analysis of morphology and composition.
    Radny T; Gnaser H
    Nanoscale Res Lett; 2014; 9(1):403. PubMed ID: 25246858
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Designing self-organized nanopatterns on Si by ion irradiation and metal co-deposition.
    Zhang K; Bobes O; Hofsäss H
    Nanotechnology; 2014 Feb; 25(8):085301. PubMed ID: 24492328
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ion beam sputtering induced nanostructuring of polycrystalline metal films.
    Ghose D
    J Phys Condens Matter; 2009 Jun; 21(22):224001. PubMed ID: 21715740
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coupling of morphology to surface transport in ion-beam-irradiated surfaces: normal incidence and rotating targets.
    Muñoz-García J; Cuerno R; Castro M
    J Phys Condens Matter; 2009 Jun; 21(22):224020. PubMed ID: 21715758
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigating ripple pattern formation and damage profiles in Si and Ge induced by 100 keV Ar
    Sulania I; Sondhi H; Kumar T; Ojha S; Umapathy GR; Mishra A; Tripathi A; Krishna R; Avasthi DK; Mishra YK
    Beilstein J Nanotechnol; 2024; 15():367-375. PubMed ID: 38590431
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synchrotron x-ray scattering from metal surfaces nanostructured by IBS.
    Boragno C; Felici R
    J Phys Condens Matter; 2009 Jun; 21(22):224006. PubMed ID: 21715745
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Applications of metal surfaces nanostructured by ion beam sputtering.
    Buatier de Mongeot F; Valbusa U
    J Phys Condens Matter; 2009 Jun; 21(22):224022. PubMed ID: 21715760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.