These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 21828846)

  • 21. Ripple formation on silicon by medium energy ion bombardment.
    Chini TK; Datta DP; Bhattacharyya SR
    J Phys Condens Matter; 2009 Jun; 21(22):224004. PubMed ID: 21715743
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Studies of self-organized nanostructures on InP(111) surfaces after low energy Ar+ ion irradiation.
    Paramanik D; Majumdar S; Sahoo SR; Sahu SN; Varma S
    J Nanosci Nanotechnol; 2008 Aug; 8(8):4227-30. PubMed ID: 19049208
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Large area smoothing of surfaces by ion bombardment: fundamentals and applications.
    Frost F; Fechner R; Ziberi B; Völlner J; Flamm D; Schindler A
    J Phys Condens Matter; 2009 Jun; 21(22):224026. PubMed ID: 21715764
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Self-organized nanopatterning of polycarbonate surfaces by argon ion sputtering.
    Goyal M; Gupta D; Aggarwal S; Sharma A
    J Phys Condens Matter; 2018 Jul; 30(28):284002. PubMed ID: 29855431
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhancement of antiferromagnetic coupling in magnetic multilayers by low energy ion beam substrate nanopatterning.
    Quirós C; Peverini L; Zárate L; Alija A; Díaz J; Vélez M; Rodríguez-Rodríguez G; Fauth F; Ziegler E; Alameda JM
    J Phys Condens Matter; 2009 Jun; 21(22):224024. PubMed ID: 21715762
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Early stage of ripple formation on Ge(001) surfaces under near-normal ion beam sputtering.
    Carbone D; Alija A; Plantevin O; Gago R; Facsko S; Metzger TH
    Nanotechnology; 2008 Jan; 19(3):035304. PubMed ID: 21817567
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Formation of silicon nanodots via ion beam sputtering of ultrathin gold thin film coatings on Si.
    El-Atwani O; Ortoleva S; Cimaroli A; Allain JP
    Nanoscale Res Lett; 2011 May; 6(1):403. PubMed ID: 21711934
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evolution of a polysulfone nanofiltration membrane following ion beam irradiation.
    Chennamsetty R; Escobar I
    Langmuir; 2008 May; 24(10):5569-79. PubMed ID: 18439033
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A self-sputtering ion source: a new approach to quiescent metal ion beams.
    Oks E; Anders A
    Rev Sci Instrum; 2010 Feb; 81(2):02B306. PubMed ID: 20192429
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Self-organized nanodot pattern fabrication using the reverse sputtering method.
    Iwata N; Mori G; Arai N; Murakami Y; Takahashi A
    Nanotechnology; 2010 Sep; 21(36):365301. PubMed ID: 20699486
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Change in the microstructure at W/Si interface and surface by swift heavy ions.
    Agarwal G; Kulshrestha V; Sharma P; Jain IP
    J Colloid Interface Sci; 2010 Nov; 351(2):570-5. PubMed ID: 20723906
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The molecular dynamics simulation of ion-induced ripple growth.
    Süle P; Heinig KH
    J Chem Phys; 2009 Nov; 131(20):204704. PubMed ID: 19947701
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular dynamic-secondary ion mass spectrometry (D-SIMS) ionized by co-sputtering with C60+ and Ar+.
    You YW; Chang HY; Lin WC; Kuo CH; Lee SH; Kao WL; Yen GJ; Chang CJ; Liu CP; Huang CC; Liao HY; Shyue JJ
    Rapid Commun Mass Spectrom; 2011 Oct; 25(19):2897-904. PubMed ID: 21913268
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interfacially formed organized planar inorganic, polymeric and composite nanostructures.
    Khomutov GB
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):79-116. PubMed ID: 15571664
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The morphology of amorphous SiO(2) surfaces during low energy ion sputtering.
    Keller A; Facsko S; Möller W
    J Phys Condens Matter; 2009 Dec; 21(49):495305. PubMed ID: 21836193
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Coupled effects of ion beam chemistry and morphology on directed self-assembly of epitaxial semiconductor nanostructures.
    Graham JF; Kell CD; Floro JA; Hull R
    Nanotechnology; 2011 Feb; 22(7):075301. PubMed ID: 21233546
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Influence of local densification on microscopic morphology evolution during ion-beam sputtering of fused-silica surfaces.
    Liao W; Dai Y; Xie X; Zhou L
    Appl Opt; 2014 Apr; 53(11):2487-93. PubMed ID: 24787422
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Producing nanodot arrays with improved hexagonal order by patterning surfaces before ion sputtering.
    Pearson DA; Bradley RM; Motta FC; Shipman PD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):062401. PubMed ID: 26764697
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ion-Induced Nanoscale Ripple Patterns on Si Surfaces: Theory and Experiment.
    Keller A; Facsko S
    Materials (Basel); 2010 Oct; 3(10):4811-4841. PubMed ID: 28883355
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Self-Assembled Gold Nano-Ripple Formation by Gas Cluster Ion Beam Bombardment.
    Tilakaratne BP; Chen QY; Chu WK
    Materials (Basel); 2017 Sep; 10(9):. PubMed ID: 28885577
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.