These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 21828875)

  • 21. The influence of post-growth annealing on the optical properties of InAs quantum dot chains grown on pre-patterned GaAs(100).
    Hakkarainen TV; Polojärvi V; Schramm A; Tommila J; Guina M
    Nanotechnology; 2012 Mar; 23(11):115702. PubMed ID: 22369789
    [TBL] [Abstract][Full Text] [Related]  

  • 22. GaSb/GaAs type-II quantum dots grown by droplet epitaxy.
    Liang B; Lin A; Pavarelli N; Reyner C; Tatebayashi J; Nunna K; He J; Ochalski TJ; Huyet G; Huffaker DL
    Nanotechnology; 2009 Nov; 20(45):455604. PubMed ID: 19834245
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization and Effect of Thermal Annealing on InAs Quantum Dots Grown by Droplet Epitaxy on GaAs(111)A Substrates.
    Bietti S; Esposito L; Fedorov A; Ballabio A; Martinelli A; Sanguinetti S
    Nanoscale Res Lett; 2015 Dec; 10(1):930. PubMed ID: 26058506
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Site-controlled self-assembled InAs quantum dots grown on GaAs substrates.
    Lin SY; Tseng CC; Chung TH; Liao WH; Chen SH; Chyi JI
    Nanotechnology; 2010 Jul; 21(29):295304. PubMed ID: 20601753
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ga crystallization dynamics during annealing of self-assisted GaAs nanowires.
    Scarpellini D; Fedorov A; Somaschini C; Frigeri C; Bollani M; Bietti S; Nöetzel R; Sanguinetti S
    Nanotechnology; 2017 Jan; 28(4):045605. PubMed ID: 27997367
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Atomic-Scale Characterization of Droplet Epitaxy Quantum Dots.
    Gajjela RSR; Koenraad PM
    Nanomaterials (Basel); 2021 Jan; 11(1):. PubMed ID: 33401568
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fundamental role of arsenic flux in nanohole formation by Ga droplet etching on GaAs(001).
    Fuster D; González Y; González L
    Nanoscale Res Lett; 2014; 9(1):309. PubMed ID: 24994962
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Self-assembled growth of GaAs anti quantum dots in InAs matrix by migration enhanced molecular beam epitaxy.
    Lee EH; Song JD; Kim SY; Han IK; Chang SK; Lee JI
    J Nanosci Nanotechnol; 2012 Feb; 12(2):1480-2. PubMed ID: 22629983
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Origin of quantum ring formation during droplet epitaxy.
    Zhou ZY; Zheng CX; Tang WX; Tersoff J; Jesson DE
    Phys Rev Lett; 2013 Jul; 111(3):036102. PubMed ID: 23909340
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Large size self-assembled quantum rings: quantum size effect and modulation on the surface diffusion.
    Tong C; Yoon SF; Wang L
    Nanoscale Res Lett; 2012 Sep; 7(1):520. PubMed ID: 23006618
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Shape control of InGaAs nanostructures on nominal GaAs(001): dashes and dots.
    Kim DJ; Yang H
    Nanotechnology; 2008 Nov; 19(47):475601. PubMed ID: 21836276
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High-temperature droplet epitaxy of symmetric GaAs/AlGaAs quantum dots.
    Bietti S; Basset FB; Tuktamyshev A; Bonera E; Fedorov A; Sanguinetti S
    Sci Rep; 2020 Apr; 10(1):6532. PubMed ID: 32300114
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modeling of Masked Droplet Deposition for Site-Controlled Ga Droplets.
    Feddersen S; Zolatanosha V; Alshaikh A; Reuter D; Heyn C
    Nanomaterials (Basel); 2023 Jan; 13(3):. PubMed ID: 36770427
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fast emission dynamics in droplet epitaxy GaAs ring-disk nanostructures integrated on Si.
    Cavigli L; Bietti S; Abbarchi M; Somaschini C; Vinattieri A; Gurioli M; Fedorov A; Isella G; Grilli E; Sanguinetti S
    J Phys Condens Matter; 2012 Mar; 24(10):104017. PubMed ID: 22353556
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Position controlled self-catalyzed growth of GaAs nanowires by molecular beam epitaxy.
    Bauer B; Rudolph A; Soda M; Fontcuberta i Morral A; Zweck J; Schuh D; Reiger E
    Nanotechnology; 2010 Oct; 21(43):435601. PubMed ID: 20876983
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The evolution of self-assembled InAs/GaAs(001) quantum dots grown by growth-interrupted molecular beam epitaxy.
    Balzarotti A
    Nanotechnology; 2008 Dec; 19(50):505701. PubMed ID: 19942778
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nanoscale footprints of self-running gallium droplets on GaAs surface.
    Wu J; Wang ZM; Li AZ; Benamara M; Li S; Salamo GJ
    PLoS One; 2011; 6(6):e20765. PubMed ID: 21673965
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Three dimensional atom probe imaging of GaAsSb quantum rings.
    Beltrán AM; Marquis EA; Taboada AG; Ripalda JM; García JM; Molina SI
    Ultramicroscopy; 2011 Jul; 111(8):1073-6. PubMed ID: 21740870
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Formation of Ga droplets on patterned GaAs (100) by molecular beam epitaxy.
    Li MY; Hirono Y; Koukourinkova SD; Sui M; Song S; Kim ES; Lee J; Salamo GJ
    Nanoscale Res Lett; 2012 Oct; 7(1):550. PubMed ID: 23033893
    [TBL] [Abstract][Full Text] [Related]  

  • 40. New approach to local anodic oxidation of semiconductor heterostructures.
    Martaus J; Gregusová D; Cambel V; Kúdela R; Soltýs J
    Ultramicroscopy; 2008 Sep; 108(10):1086-9. PubMed ID: 18555609
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.