These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 21828885)

  • 1. Investigation of superconductivity in electrochemically fabricated AuSn nanowires.
    Kumar N; Tian ML; Wang JG; Watts W; Kindt J; Mallouk TE; Chan MH
    Nanotechnology; 2008 Sep; 19(36):365704. PubMed ID: 21828885
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microstructure and superconductivity of Zn and Au-Sn junction nanowires.
    Wang J; Tian M; Kim MJ
    J Nanosci Nanotechnol; 2009 Feb; 9(2):946-50. PubMed ID: 19441428
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Observation of superconductivity in single crystalline Bi nanowires.
    Ye Z; Zhang H; Liu H; Wu W; Luo Z
    Nanotechnology; 2008 Feb; 19(8):085709. PubMed ID: 21730740
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Superconducting transition in Nb nanowires fabricated using focused ion beam.
    Tettamanzi GC; Pakes CI; Potenza A; Rubanov S; Marrows CH; Prawer S
    Nanotechnology; 2009 Nov; 20(46):465302. PubMed ID: 19843991
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of molecular adsorption on the electrical conductance of single au nanowires fabricated by electron-beam lithography and focused ion beam etching.
    Shi P; Zhang J; Lin HY; Bohn PW
    Small; 2010 Nov; 6(22):2598-603. PubMed ID: 20957763
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low temperature magnetoresistance measurements on bismuth nanowire arrays.
    Kaiser Ch; Weiss G; Cornelius TW; Toimil-Molares ME; Neumann R
    J Phys Condens Matter; 2009 May; 21(20):205301. PubMed ID: 21825526
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystalline Niobium Carbide Superconducting Nanowires Prepared by Focused Ion Beam Direct Writing.
    Porrati F; Barth S; Sachser R; Dobrovolskiy OV; Seybert A; Frangakis AS; Huth M
    ACS Nano; 2019 Jun; 13(6):6287-6296. PubMed ID: 31046238
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnetization and electric transport properties of single-crystal MgB2 nanowires.
    Wu CS; Chang YC; Chen W; Chen C; Feng Q
    Nanotechnology; 2012 Nov; 23(46):465706. PubMed ID: 23092962
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Template synthesis and forming electrical contacts to single Au nanowires by focused ion beam techniques.
    Valizadeh S; Abid M; Hernández-Ramírez F; Romano Rodríguez A; Hjort K; Schweitz JA
    Nanotechnology; 2006 Feb; 17(4):1134-9. PubMed ID: 21727393
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Customizable in situ TEM devices fabricated in freestanding membranes by focused ion beam milling.
    Lei A; Petersen DH; Booth TJ; Homann LV; Kallesoe C; Sukas OS; Gyrsting Y; Molhave K; Boggild P
    Nanotechnology; 2010 Oct; 21(40):405304. PubMed ID: 20829573
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective synthesis and superconductivity of In-Sn intermetallic nanowires sheathed in carbon nanotubes.
    Jeong N; Yeo JG
    Nanotechnology; 2012 Jul; 23(28):285604. PubMed ID: 22728332
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Superconducting properties of tungsten nanowires fabricated using focussed ion beam technique.
    Aloysius RP; Husale S; Kumar A; Ahmad F; Gangwar AK; Papanai GS; Gupta A
    Nanotechnology; 2019 Oct; 30(40):405001. PubMed ID: 31247608
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrical conduction mechanisms in natively doped ZnO nanowires (II).
    Tsai LT; Chiu SP; Lu JG; Lin JJ
    Nanotechnology; 2010 Apr; 21(14):145202. PubMed ID: 20215656
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vapor-solid growth of Sn nanowires: growth mechanism and superconductivity.
    Hsu YJ; Lu SY
    J Phys Chem B; 2005 Mar; 109(10):4398-403. PubMed ID: 16851508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Observation of superconductivity in granular bi nanowires fabricated by electrodeposition.
    Tian M; Wang J; Kumar N; Han T; Kobayashi Y; Liu Y; Mallouk TE; Chan MH
    Nano Lett; 2006 Dec; 6(12):2773-80. PubMed ID: 17163704
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Felling of individual freestanding nanoobjects using focused-ion-beam milling for investigations of structural and transport properties.
    Li W; Fenton JC; Cui A; Wang H; Wang Y; Gu C; McComb DW; Warburton PA
    Nanotechnology; 2012 Mar; 23(10):105301. PubMed ID: 22350591
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct observation of the semimetal-to-semiconductor transition of individual single-crystal bismuth nanowires grown by on-film formation of nanowires.
    Lee S; Ham J; Jeon K; Noh JS; Lee W
    Nanotechnology; 2010 Oct; 21(40):405701. PubMed ID: 20823499
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Four-probe electrical-transport measurements on single indium tin oxide nanowires between 1.5 and 300 K.
    Chiu SP; Chung HF; Lin YH; Kai JJ; Chen FR; Lin JJ
    Nanotechnology; 2009 Mar; 20(10):105203. PubMed ID: 19417513
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlled crystallinity and crystallographic orientation of Cu nanowires fabricated in ion-track templates.
    Duan J; Liu J; Mo D; Yao H; Maaz K; Chen Y; Sun Y; Hou M; Qu X; Zhang L; Chen Y
    Nanotechnology; 2010 Sep; 21(36):365605. PubMed ID: 20705973
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diamond-modified AFM probes: from diamond nanowires to atomic force microscopy-integrated boron-doped diamond electrodes.
    Smirnov W; Kriele A; Hoffmann R; Sillero E; Hees J; Williams OA; Yang N; Kranz C; Nebel CE
    Anal Chem; 2011 Jun; 83(12):4936-41. PubMed ID: 21534601
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.