These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 21828894)

  • 1. Metallic nanowire-graphene hybrid nanostructures for highly flexible field emission devices.
    Arif M; Heo K; Lee BY; Lee J; Seo DH; Seo S; Jian J; Hong S
    Nanotechnology; 2011 Sep; 22(35):355709. PubMed ID: 21828894
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reply to comment on 'Metallic nanowire-graphene hybrid nanostructures for highly flexible field emission devices'.
    Lee J; Lee H; Heo K; Lee BY; Hong S
    Nanotechnology; 2012 Jul; 23(28):288002. PubMed ID: 22728766
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flexible field emission of nitrogen-doped carbon nanotubes/reduced graphene hybrid films.
    Lee DH; Lee JA; Lee WJ; Kim SO
    Small; 2011 Jan; 7(1):95-100. PubMed ID: 21104826
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of graphene-based flexible devices utilizing a soft lithographic patterning method.
    Jung MW; Myung S; Kim KW; Song W; Jo YY; Lee SS; Lim J; Park CY; An KS
    Nanotechnology; 2014 Jul; 25(28):285302. PubMed ID: 24971722
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlled growth of semiconducting nanowire, nanowall, and hybrid nanostructures on graphene for piezoelectric nanogenerators.
    Kumar B; Lee KY; Park HK; Chae SJ; Lee YH; Kim SW
    ACS Nano; 2011 May; 5(5):4197-204. PubMed ID: 21495657
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hybrid nanowire-multilayer graphene film light-emitting sources.
    Kim S; Choi H; Jung M; Choi SY; Ju S
    Nanotechnology; 2010 Oct; 21(42):425203. PubMed ID: 20858932
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon and metal nanotube hybrid structures on graphene as efficient electron field emitters.
    Heo K; Lee BY; Lee H; Cho DG; Arif M; Kim KY; Choi YJ; Hong S
    Nanotechnology; 2016 Jul; 27(27):275301. PubMed ID: 27233004
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly stable and flexible silver nanowire-graphene hybrid transparent conducting electrodes for emerging optoelectronic devices.
    Lee D; Lee H; Ahn Y; Jeong Y; Lee DY; Lee Y
    Nanoscale; 2013 Sep; 5(17):7750-5. PubMed ID: 23842732
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comment on 'Metallic nanowire-graphene hybrid nanostructures for highly flexible field emission devices'.
    Forbes RG
    Nanotechnology; 2012 Jul; 23(28):288001. PubMed ID: 22728698
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stable field emission from arrays of vertically aligned free-standing metallic nanowires.
    Xavier S; Mátéfi-Tempfli S; Ferain E; Purcell S; Enouz-Védrenne S; Gangloff L; Minoux E; Hudanski L; Vincent P; Schnell JP; Pribat D; Piraux L; Legagneux P
    Nanotechnology; 2008 May; 19(21):215601. PubMed ID: 21730574
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel fabrication method of diverse one-dimensional Pt/ZnO hybrid nanostructures and its sensor application.
    Lim MA; Lee YW; Han SW; Park I
    Nanotechnology; 2011 Jan; 22(3):035601. PubMed ID: 21149953
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nano-soldering of magnetically aligned three-dimensional nanowire networks.
    Gao F; Gu Z
    Nanotechnology; 2010 Mar; 21(11):115604. PubMed ID: 20179331
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reliability enhancement of germanium nanowires using graphene as a protective layer: aspect of thermal stability.
    Lee JH; Choi SH; Patole SP; Jang Y; Heo K; Joo WJ; Yoo JB; Hwang SW; Whang D
    ACS Appl Mater Interfaces; 2014 Apr; 6(7):5069-74. PubMed ID: 24617670
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The controlled growth of single metallic and conducting polymer nanowires via gate-assisted electrochemical deposition.
    Hu Y; To AC; Yun M
    Nanotechnology; 2009 Jul; 20(28):285605. PubMed ID: 19550021
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inorganic nanostructures grown on graphene layers.
    Park WI; Lee CH; Lee JM; Kim NJ; Yi GC
    Nanoscale; 2011 Sep; 3(9):3522-33. PubMed ID: 21785807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlled growth of carbon nanotube-graphene hybrid materials for flexible and transparent conductors and electron field emitters.
    Nguyen DD; Tai NH; Chen SY; Chueh YL
    Nanoscale; 2012 Jan; 4(2):632-8. PubMed ID: 22147118
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel fabrication of flexible graphene-based chemical sensors with heaters using soft lithographic patterning method.
    Jung MW; Myung S; Song W; Kang MA; Kim SH; Yang CS; Lee SS; Lim J; Park CY; Lee JO; An KS
    ACS Appl Mater Interfaces; 2014 Aug; 6(16):13319-23. PubMed ID: 25087923
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new route toward ultrasensitive, flexible chemical sensors: metal nanotubes by wet-chemical synthesis along sacrificial nanowire templates.
    Lim MA; Kim DH; Park CO; Lee YW; Han SW; Li Z; Williams RS; Park I
    ACS Nano; 2012 Jan; 6(1):598-608. PubMed ID: 22148522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flexible graphene-based electroluminescent devices.
    Wang ZG; Chen YF; Li PJ; Hao X; Liu JB; Huang R; Li YR
    ACS Nano; 2011 Sep; 5(9):7149-54. PubMed ID: 21842851
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Super-elastic graphene ripples for flexible strain sensors.
    Wang Y; Yang R; Shi Z; Zhang L; Shi D; Wang E; Zhang G
    ACS Nano; 2011 May; 5(5):3645-50. PubMed ID: 21452882
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.