These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 21828897)

  • 1. Toward portable breath acetone analysis for diabetes detection.
    Righettoni M; Tricoli A
    J Breath Res; 2011 Sep; 5(3):037109. PubMed ID: 21828897
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Si:WO(3) Sensors for highly selective detection of acetone for easy diagnosis of diabetes by breath analysis.
    Righettoni M; Tricoli A; Pratsinis SE
    Anal Chem; 2010 May; 82(9):3581-7. PubMed ID: 20380475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Breath acetone monitoring by portable Si:WO3 gas sensors.
    Righettoni M; Tricoli A; Gass S; Schmid A; Amann A; Pratsinis SE
    Anal Chim Acta; 2012 Aug; 738():69-75. PubMed ID: 22790702
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monitoring breath markers under controlled conditions.
    Righettoni M; Ragnoni A; Güntner AT; Loccioni C; Pratsinis SE; Risby TH
    J Breath Res; 2015 Oct; 9(4):047101. PubMed ID: 26469378
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correlations between blood glucose and breath components from portable gas sensors and PTR-TOF-MS.
    Righettoni M; Schmid A; Amann A; Pratsinis SE
    J Breath Res; 2013 Sep; 7(3):037110. PubMed ID: 23959908
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Is breath acetone a biomarker of diabetes? A historical review on breath acetone measurements.
    Wang Z; Wang C
    J Breath Res; 2013 Sep; 7(3):037109. PubMed ID: 23959840
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensors for Enhanced Detection of Acetone as a Potential Tool for Noninvasive Diabetes Monitoring.
    Rydosz A
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 30012960
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Guiding Ketogenic Diet with Breath Acetone Sensors.
    Güntner AT; Kompalla JF; Landis H; Theodore SJ; Geidl B; Sievi NA; Kohler M; Pratsinis SE; Gerber PA
    Sensors (Basel); 2018 Oct; 18(11):. PubMed ID: 30373291
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A prototype portable breath acetone analyzer for monitoring fat loss.
    Toyooka T; Hiyama S; Yamada Y
    J Breath Res; 2013 Sep; 7(3):036005. PubMed ID: 23883482
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ZIF Nanocrystal-Based Surface Acoustic Wave (SAW) Electronic Nose to Detect Diabetes in Human Breath.
    Bahos FA; Sainz-Vidal A; Sánchez-Pérez C; Saniger JM; Gràcia I; Saniger-Alba MM; Matatagui D
    Biosensors (Basel); 2018 Dec; 9(1):. PubMed ID: 30587840
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanowire Array Breath Acetone Sensor for Diabetes Monitoring.
    Wei S; Li Z; Murugappan K; Li Z; Lysevych M; Vora K; Tan HH; Jagadish C; Karawdeniya BI; Nolan CJ; Tricoli A; Fu L
    Adv Sci (Weinh); 2024 May; 11(19):e2309481. PubMed ID: 38477429
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diagnosis of diabetes by image detection of breath using gas-sensitive LAPS.
    Zhang Q; Wang P; Li J; Gao X
    Biosens Bioelectron; 2000 Aug; 15(5-6):249-56. PubMed ID: 11219736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding the Potential of WO₃ Based Sensors for Breath Analysis.
    Staerz A; Weimar U; Barsan N
    Sensors (Basel); 2016 Oct; 16(11):. PubMed ID: 27801881
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of online and offline measurement of exhaled breath for diabetes pre-screening by graphene-based sensor; from powder processing to clinical monitoring prototype.
    Kalidoss R; Umapathy S
    J Breath Res; 2019 May; 13(3):036008. PubMed ID: 30794992
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective diagnosis of diabetes using Pt-functionalized WO3 hemitube networks as a sensing layer of acetone in exhaled breath.
    Choi SJ; Lee I; Jang BH; Youn DY; Ryu WH; Park CO; Kim ID
    Anal Chem; 2013 Feb; 85(3):1792-6. PubMed ID: 23252728
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Au-modified three-dimensional In₂O₃ inverse opals: synthesis and improved performance for acetone sensing toward diagnosis of diabetes.
    Xing R; Li Q; Xia L; Song J; Xu L; Zhang J; Xie Y; Song H
    Nanoscale; 2015 Aug; 7(30):13051-60. PubMed ID: 26172336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An overview on the exponential growth of non-invasive diagnosis of diabetes mellitus from exhaled breath by nanostructured metal oxide Chemi-resistive gas sensors and μ-preconcentrator.
    Kalidoss R; Umapathy S
    Biomed Microdevices; 2019 Dec; 22(1):2. PubMed ID: 31797133
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cataluminescence sensor based on Pt/NU-901 nanocomposite for rapid capture, catalysis and detection of acetone in exhaled breath.
    Shi Z; Li G; Hu Y
    Anal Chim Acta; 2022 May; 1206():339787. PubMed ID: 35473866
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Can volatile compounds in exhaled breath be used to monitor control in diabetes mellitus?
    Smith D; Spaněl P; Fryer AA; Hanna F; Ferns GA
    J Breath Res; 2011 Jun; 5(2):022001. PubMed ID: 21512208
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The use of a portable breath analysis device in monitoring type 1 diabetes patients in a hypoglycaemic clamp: validation with SIFT-MS data.
    Walton C; Patel M; Pitts D; Knight P; Hoashi S; Evans M; Turner C
    J Breath Res; 2014 Sep; 8(3):037108. PubMed ID: 25190582
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.