BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 21829096)

  • 1. Engineering host-derived resistance against plant parasites through RNA interference: challenges and opportunities.
    Runo S
    Bioeng Bugs; 2011; 2(4):208-13. PubMed ID: 21829096
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tuning Beforehand: A Foresight on RNA Interference (RNAi) and In Vitro-Derived dsRNAs to Enhance Crop Resilience to Biotic and Abiotic Stresses.
    Abdellatef E; Kamal NM; Tsujimoto H
    Int J Mol Sci; 2021 Jul; 22(14):. PubMed ID: 34299307
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Next-Generation Insect-Resistant Plants: RNAi-Mediated Crop Protection.
    Zhang J; Khan SA; Heckel DG; Bock R
    Trends Biotechnol; 2017 Sep; 35(9):871-882. PubMed ID: 28822479
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering host resistance against parasitic weeds with RNA interference.
    Yoder JI; Gunathilake P; Wu B; Tomilova N; Tomilov AA
    Pest Manag Sci; 2009 May; 65(5):460-6. PubMed ID: 19235710
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generation of Virus- and dsRNA-Derived siRNAs with Species-Dependent Length in Insects.
    Santos D; Mingels L; Vogel E; Wang L; Christiaens O; Cappelle K; Wynant N; Gansemans Y; Van Nieuwerburgh F; Smagghe G; Swevers L; Vanden Broeck J
    Viruses; 2019 Aug; 11(8):. PubMed ID: 31405199
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RNA interference and plant parasitic nematodes.
    Bakhetia M; Charlton WL; Urwin PE; McPherson MJ; Atkinson HJ
    Trends Plant Sci; 2005 Aug; 10(8):362-7. PubMed ID: 16027029
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RNA interference in plant parasitic nematodes: a summary of the current status.
    Lilley CJ; Davies LJ; Urwin PE
    Parasitology; 2012 Apr; 139(5):630-40. PubMed ID: 22217302
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RNA interference technology in crop protection against arthropod pests, pathogens and nematodes.
    Zotti M; Dos Santos EA; Cagliari D; Christiaens O; Taning CNT; Smagghe G
    Pest Manag Sci; 2018 Jun; 74(6):1239-1250. PubMed ID: 29194942
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Host-delivered RNAi: an effective strategy to silence genes in plant parasitic nematodes.
    Fairbairn DJ; Cavallaro AS; Bernard M; Mahalinga-Iyer J; Graham MW; Botella JR
    Planta; 2007 Nov; 226(6):1525-33. PubMed ID: 17653759
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New wind in the sails: improving the agronomic value of crop plants through RNAi-mediated gene silencing.
    Koch A; Kogel KH
    Plant Biotechnol J; 2014 Sep; 12(7):821-31. PubMed ID: 25040343
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RNA interference as a resistance mechanism against crop parasites in Africa: a 'Trojan horse' approach.
    Runo S; Alakonya A; Machuka J; Sinha N
    Pest Manag Sci; 2011 Feb; 67(2):129-36. PubMed ID: 21061276
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RNAi-mediated crop protection against insects.
    Price DR; Gatehouse JA
    Trends Biotechnol; 2008 Jul; 26(7):393-400. PubMed ID: 18501983
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [RNA interference and its possible use in cancer therapy].
    Ait-Si-Ali S; Guasconi V; Harel-Bellan A
    Bull Cancer; 2004 Jan; 91(1):15-8. PubMed ID: 14975801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disruption of prefoldin-2 protein synthesis in root-knot nematodes via host-mediated gene silencing efficiently reduces nematode numbers and thus protects plants.
    Ajjappala H; Chung HY; Sim JS; Choi I; Hahn BS
    Planta; 2015 Mar; 241(3):773-87. PubMed ID: 25491640
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RNAi from plants to nematodes.
    Gheysen G; Vanholme B
    Trends Biotechnol; 2007 Mar; 25(3):89-92. PubMed ID: 17254655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Post-transcriptional gene silencing: Basic concepts and applications.
    Ashfaq MA; Kumar VD; Reddy PSS; Kumar CHA; Kumar KS; Rao NN; Tarakeswari M; Sujatha M
    J Biosci; 2020; 45():. PubMed ID: 33184244
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RNA interference-based gene silencing in mice: the development of a novel therapeutical strategy.
    Spänkuch B; Strebhardt K
    Curr Pharm Des; 2005; 11(26):3405-19. PubMed ID: 16250844
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RNA interference: a new strategy in the evolutionary arms race between human control strategies and insect pests.
    Machado V; Rodríguez-García MJ; Sánchez-García FJ; Galan J
    Folia Biol (Krakow); 2014; 62(4):335-43. PubMed ID: 25916161
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Emerging strategies for RNA interference (RNAi) applications in insects.
    Nandety RS; Kuo YW; Nouri S; Falk BW
    Bioengineered; 2015; 6(1):8-19. PubMed ID: 25424593
    [TBL] [Abstract][Full Text] [Related]  

  • 20. VIGS, HIGS and FIGS: small RNA silencing in the interactions of viruses or filamentous organisms with their plant hosts.
    Baulcombe DC
    Curr Opin Plant Biol; 2015 Aug; 26():141-6. PubMed ID: 26247121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.