BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 21829494)

  • 1. Wasp-waist interactions in the North Sea ecosystem.
    Fauchald P; Skov H; Skern-Mauritzen M; Johns D; Tveraa T
    PLoS One; 2011; 6(7):e22729. PubMed ID: 21829494
    [TBL] [Abstract][Full Text] [Related]  

  • 2. From plankton to top predators: bottom-up control of a marine food web across four trophic levels.
    Frederiksen M; Edwards M; Richardson AJ; Halliday NC; Wanless S
    J Anim Ecol; 2006 Nov; 75(6):1259-68. PubMed ID: 17032358
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interacting trophic forcing and the population dynamics of herring.
    Lindegren M; Ostman O; Gårdmark A
    Ecology; 2011 Jul; 92(7):1407-13. PubMed ID: 21870614
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction between top-down and bottom-up control in marine food webs.
    Lynam CP; Llope M; Möllmann C; Helaouët P; Bayliss-Brown GA; Stenseth NC
    Proc Natl Acad Sci U S A; 2017 Feb; 114(8):1952-1957. PubMed ID: 28167770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of climate change and trophic coupling across four trophic levels in the Celtic Sea.
    Lauria V; Attrill MJ; Pinnegar JK; Brown A; Edwards M; Votier SC
    PLoS One; 2012; 7(10):e47408. PubMed ID: 23091621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predator-prey reversal: a possible mechanism for ecosystem hysteresis in the North Sea?
    Fauchald P
    Ecology; 2010 Aug; 91(8):2191-7. PubMed ID: 20836439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Seasonal plankton-fish interactions: light regime, prey phenology, and herring foraging.
    Varpe Ø; Fiksen Ø
    Ecology; 2010 Feb; 91(2):311-8. PubMed ID: 20391994
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stable isotopes show food web changes after invasion by the predatory cladoceran Cercopagis pengoi in a Baltic Sea bay.
    Gorokhova E; Hansson S; Höglander H; Andersen CM
    Oecologia; 2005 Mar; 143(2):251-9. PubMed ID: 15688211
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Feeding ecology of pelagic fish species in the Gulf of Riga (Baltic Sea): the importance of changes in the zooplankton community.
    Lankov A; Ojaveer H; Simm M; Põllupüü M; Möllmann C
    J Fish Biol; 2010 Dec; 77(10):2268-84. PubMed ID: 21155782
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Niche partitioning between planktivorous fish in the pelagic Baltic Sea assessed by DNA metabarcoding, qPCR and microscopy.
    Novotny A; Jan KMG; Dierking J; Winder M
    Sci Rep; 2022 Jun; 12(1):10952. PubMed ID: 35768563
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scale-dependent response diversity of seabirds to prey in the North Sea.
    Fauchald P; Skov H; Skern-Mauritzen M; Hausner VH; Johns D; Tveraa T
    Ecology; 2011 Jan; 92(1):228-39. PubMed ID: 21560693
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioenergetics modeling of the annual consumption of zooplankton by pelagic fish feeding in the Northeast Atlantic.
    Bachiller E; Utne KR; Jansen T; Huse G
    PLoS One; 2018; 13(1):e0190345. PubMed ID: 29293577
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predatory zooplankton on the move: Themisto amphipods in high-latitude marine pelagic food webs.
    Havermans C; Auel H; Hagen W; Held C; Ensor NS; A Tarling G
    Adv Mar Biol; 2019; 82():51-92. PubMed ID: 31229150
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heatwave-induced synchrony within forage fish portfolio disrupts energy flow to top pelagic predators.
    Arimitsu ML; Piatt JF; Hatch S; Suryan RM; Batten S; Bishop MA; Campbell RW; Coletti H; Cushing D; Gorman K; Hopcroft RR; Kuletz KJ; Marsteller C; McKinstry C; McGowan D; Moran J; Pegau S; Schaefer A; Schoen S; Straley J; von Biela VR
    Glob Chang Biol; 2021 May; 27(9):1859-1878. PubMed ID: 33577102
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-level trophic cascades in a heavily exploited open marine ecosystem.
    Casini M; Lövgren J; Hjelm J; Cardinale M; Molinero JC; Kornilovs G
    Proc Biol Sci; 2008 Aug; 275(1644):1793-801. PubMed ID: 18460432
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predator-prey interactions cause apparent competition between marine zooplankton groups.
    Stige LC; Kvile KØ; Bogstad B; Langangen Ø
    Ecology; 2018 Mar; 99(3):632-641. PubMed ID: 29281755
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A decline in primary production in the North Sea over 25 years, associated with reductions in zooplankton abundance and fish stock recruitment.
    Capuzzo E; Lynam CP; Barry J; Stephens D; Forster RM; Greenwood N; McQuatters-Gollop A; Silva T; van Leeuwen SM; Engelhard GH
    Glob Chang Biol; 2018 Jan; 24(1):e352-e364. PubMed ID: 28944532
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Climate change-related regime shifts have altered spatial synchrony of plankton dynamics in the North Sea.
    Defriez EJ; Sheppard LW; Reid PC; Reuman DC
    Glob Chang Biol; 2016 Jun; 22(6):2069-80. PubMed ID: 26810148
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Major declines in NE Atlantic plankton contrast with more stable populations in the rapidly warming North Sea.
    Holland MM; Louchart A; Artigas LF; Ostle C; Atkinson A; Rombouts I; Graves CA; Devlin M; Heyden B; Machairopoulou M; Bresnan E; Schilder J; Jakobsen HH; Lloyd-Hartley H; Tett P; Best M; Goberville E; McQuatters-Gollop A
    Sci Total Environ; 2023 Nov; 898():165505. PubMed ID: 37451457
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A switch in species dominance of a recovering pelagic ecosystem.
    Lawrence JM; Fernandes PG
    Curr Biol; 2021 Oct; 31(19):4354-4360.e3. PubMed ID: 34320365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.