BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 21829507)

  • 1. X-ray structure reveals a new class and provides insight into evolution of alkaline phosphatases.
    Bihani SC; Das A; Nilgiriwala KS; Prashar V; Pirocchi M; Apte SK; Ferrer JL; Hosur MV
    PLoS One; 2011; 6(7):e22767. PubMed ID: 21829507
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanistic and evolutionary insights into alkaline phosphatase superfamily through structure-function studies on Sphingomonas alkaline phosphatase.
    Bihani SC; Nagar V; Kumar M
    Arch Biochem Biophys; 2023 Mar; 736():109524. PubMed ID: 36716801
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of alkaline phosphatase PhoK from Sphingomonas sp. BSAR-1 for phosphate monoester synthesis and hydrolysis.
    Lukesch M; Tasnádi G; Ditrich K; Hall M; Faber K
    Biochim Biophys Acta Proteins Proteom; 2020 Jan; 1868(1):140291. PubMed ID: 31678193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional interrelationships in the alkaline phosphatase superfamily: phosphodiesterase activity of Escherichia coli alkaline phosphatase.
    O'Brien PJ; Herschlag D
    Biochemistry; 2001 May; 40(19):5691-9. PubMed ID: 11341834
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new member of the alkaline phosphatase superfamily with a formylglycine nucleophile: structural and kinetic characterisation of a phosphonate monoester hydrolase/phosphodiesterase from Rhizobium leguminosarum.
    Jonas S; van Loo B; Hyvönen M; Hollfelder F
    J Mol Biol; 2008 Dec; 384(1):120-36. PubMed ID: 18793651
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-resolution analysis of Zn(2+) coordination in the alkaline phosphatase superfamily by EXAFS and x-ray crystallography.
    Bobyr E; Lassila JK; Wiersma-Koch HI; Fenn TD; Lee JJ; Nikolic-Hughes I; Hodgson KO; Rees DC; Hedman B; Herschlag D
    J Mol Biol; 2012 Jan; 415(1):102-17. PubMed ID: 22056344
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural and functional comparisons of nucleotide pyrophosphatase/phosphodiesterase and alkaline phosphatase: implications for mechanism and evolution.
    Zalatan JG; Fenn TD; Brunger AT; Herschlag D
    Biochemistry; 2006 Aug; 45(32):9788-803. PubMed ID: 16893180
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic and X-ray structural studies of three mutant E. coli alkaline phosphatases: insights into the catalytic mechanism without the nucleophile Ser102.
    Stec B; Hehir MJ; Brennan C; Nolte M; Kantrowitz ER
    J Mol Biol; 1998 Apr; 277(3):647-62. PubMed ID: 9533886
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential catalytic promiscuity of the alkaline phosphatase superfamily bimetallo core reveals mechanistic features underlying enzyme evolution.
    Sunden F; AlSadhan I; Lyubimov A; Doukov T; Swan J; Herschlag D
    J Biol Chem; 2017 Dec; 292(51):20960-20974. PubMed ID: 29070681
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A revised mechanism for the alkaline phosphatase reaction involving three metal ions.
    Stec B; Holtz KM; Kantrowitz ER
    J Mol Biol; 2000 Jun; 299(5):1303-11. PubMed ID: 10873454
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystallization and preliminary X-ray crystallographic analysis of PhoK, an extracellular alkaline phosphatase from Sphingomonas sp. BSAR-1.
    Nilgiriwala KS; Bihani SC; Das A; Prashar V; Kumar M; Ferrer JL; Apte SK; Hosur MV
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2009 Sep; 65(Pt 9):917-9. PubMed ID: 19724132
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A model of the transition state in the alkaline phosphatase reaction.
    Holtz KM; Stec B; Kantrowitz ER
    J Biol Chem; 1999 Mar; 274(13):8351-4. PubMed ID: 10085061
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reaction mechanism of alkaline phosphatase based on crystal structures. Two-metal ion catalysis.
    Kim EE; Wyckoff HW
    J Mol Biol; 1991 Mar; 218(2):449-64. PubMed ID: 2010919
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structure of alkaline phosphatase from human placenta at 1.8 A resolution. Implication for a substrate specificity.
    Le Du MH; Stigbrand T; Taussig MJ; Menez A; Stura EA
    J Biol Chem; 2001 Mar; 276(12):9158-65. PubMed ID: 11124260
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphate monoester hydrolysis by trinuclear alkaline phosphatase; DFT study of transition States and reaction mechanism.
    Chen SL; Liao RZ
    Chemphyschem; 2014 Aug; 15(11):2321-30. PubMed ID: 24683174
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The mechanism of the alkaline phosphatase reaction: insights from NMR, crystallography and site-specific mutagenesis.
    Holtz KM; Kantrowitz ER
    FEBS Lett; 1999 Nov; 462(1-2):7-11. PubMed ID: 10580082
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure of a human lysosomal sulfatase.
    Bond CS; Clements PR; Ashby SJ; Collyer CA; Harrop SJ; Hopwood JJ; Guss JM
    Structure; 1997 Feb; 5(2):277-89. PubMed ID: 9032078
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alkaline phosphatase mono- and diesterase reactions: comparative transition state analysis.
    Zalatan JG; Herschlag D
    J Am Chem Soc; 2006 Feb; 128(4):1293-303. PubMed ID: 16433548
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of the structural determinants underlying discrimination between substrate and solvent in beta-phosphoglucomutase catalysis.
    Dai J; Finci L; Zhang C; Lahiri S; Zhang G; Peisach E; Allen KN; Dunaway-Mariano D
    Biochemistry; 2009 Mar; 48(9):1984-95. PubMed ID: 19154134
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coordination sphere of the third metal site is essential to the activity and metal selectivity of alkaline phosphatases.
    Koutsioulis D; Lyskowski A; Mäki S; Guthrie E; Feller G; Bouriotis V; Heikinheimo P
    Protein Sci; 2010 Jan; 19(1):75-84. PubMed ID: 19916164
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.