BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 21829808)

  • 1. Optical excitations in stoichiometric uncapped ZnS nanostructures.
    Zwijnenburg MA
    Nanoscale; 2011 Sep; 3(9):3780-7. PubMed ID: 21829808
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Size- and shape-dependent phase transformations in wurtzite ZnS nanostructures.
    Feigl CA; Barnard AS; Russo SP
    Phys Chem Chem Phys; 2012 Jul; 14(28):9871-9. PubMed ID: 22722225
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Morphology-tuned wurtzite-type ZnS nanobelts.
    Wang Z; Daemen LL; Zhao Y; Zha CS; Downs RT; Wang X; Wang ZL; Hemley RJ
    Nat Mater; 2005 Dec; 4(12):922-7. PubMed ID: 16284620
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis and characterizations of ultra-small ZnS and Zn(1-x)Fe(x)S quantum dots in aqueous media and spectroscopic study of their interactions with bovine serum albumin.
    Khani O; Rajabi HR; Yousefi MH; Khosravi AA; Jannesari M; Shamsipur M
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Jul; 79(2):361-9. PubMed ID: 21482179
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation and characterization of titania/ZnS core-shell nanotubes.
    Kim MR; Ahn SJ; Jang DJ
    J Nanosci Nanotechnol; 2006 Jan; 6(1):180-4. PubMed ID: 16573092
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flexible wurtzite-type ZnS nanobelts with quantum-size effects: a diethylenetriamine-assisted solvothermal approach.
    Yao WT; Yu SH; Pan L; Li J; Wu QS; Zhang L; Jiang J
    Small; 2005 Mar; 1(3):320-5. PubMed ID: 17193450
    [No Abstract]   [Full Text] [Related]  

  • 7. Investigation of the internal heterostructure of highly luminescent quantum dot-quantum well nanocrystals.
    Santra PK; Viswanatha R; Daniels SM; Pickett NL; Smith JM; O'Brien P; Sarma DD
    J Am Chem Soc; 2009 Jan; 131(2):470-7. PubMed ID: 19140789
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of synthesis method and chemical reagents on the structural parameters, particle size, and optical and photoluminescence properties of ZnS nanostructures.
    Ghanaatian Jobzari H; Iranmanesh P; Sabet M; Saeednia S
    Luminescence; 2019 Nov; 34(7):689-698. PubMed ID: 31157503
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of local environment on photoluminescence: a time-dependent density functional theory study of silanone groups on the surface of silica nanostructures.
    Zwijnenburg MA; Sokol AA; Sousa C; Bromley ST
    J Chem Phys; 2009 Jul; 131(3):034705. PubMed ID: 19624219
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biological synthesis of semiconductor zinc sulfide nanoparticles by immobilized Rhodobacter sphaeroides.
    Bai HJ; Zhang ZM; Gong J
    Biotechnol Lett; 2006 Jul; 28(14):1135-9. PubMed ID: 16794769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The fate of optical excitations in small hydrated ZnS clusters: a theoretical study into the effect of hydration on the excitation and localisation of electrons in Zn4S4 and Zn6S6.
    Zwijnenburg MA; Illas F; Bromley ST
    Phys Chem Chem Phys; 2011 May; 13(20):9311-7. PubMed ID: 21472177
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of lattice integrity and phase composition on the photocatalytic hydrogen production efficiency of ZnS nanomaterials.
    Hong Y; Zhang J; Wang X; Wang Y; Lin Z; Yu J; Huang F
    Nanoscale; 2012 Apr; 4(9):2859-62. PubMed ID: 22456630
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interplay between amplified spontaneous emission, Forster resonant energy transfer, and self-absorption in hybrid poly(9,9-dioctylfluorene)-CdSe/ZnS nanocrystal thin films.
    Anni M; Alemanno E; Cretí A; Ingrosso C; Panniello A; Striccoli M; Curri ML; Lomascolo M
    J Phys Chem A; 2010 Feb; 114(5):2086-90. PubMed ID: 20085251
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Matchstick-shaped Ag2S-ZnS heteronanostructures preserving both UV/blue and near-infrared photoluminescence.
    Shen S; Zhang Y; Peng L; Du Y; Wang Q
    Angew Chem Int Ed Engl; 2011 Jul; 50(31):7115-8. PubMed ID: 21695752
    [No Abstract]   [Full Text] [Related]  

  • 15. Preparation of ZnS nanosheets from (2,2'-bipyridine)bis(1,2,3,4-tetrahydroquinolinecarbodithioato-S,S')zinc(II).
    Srinivasan N; Thirumaran S; Ciattini S
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Feb; 102():263-8. PubMed ID: 23220666
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental evidence of an octahedron nucleus in ZnS tetrapods.
    Gong J; Yang S; Huang H; Duan J; Liu H; Zhao X; Zhang R; Du Y
    Small; 2006 Jun; 2(6):732-5. PubMed ID: 17193113
    [No Abstract]   [Full Text] [Related]  

  • 17. High-purity nano particles ZnS production by a simple coupling reaction process of biological reduction and chemical precipitation mediated with EDTA.
    Xin B; Huang Q; Chen S; Tang X
    Biotechnol Prog; 2008; 24(5):1171-7. PubMed ID: 19194929
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-color encoding of polystyrene microbeads with CdSe/ZnS quantum dots and its application in immunoassay.
    Wang HQ; Wang JH; Li YQ; Li XQ; Liu TC; Huang ZL; Zhao YD
    J Colloid Interface Sci; 2007 Dec; 316(2):622-7. PubMed ID: 17889895
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photoluminescence and photoconductivity of ZnS:Mn(2+) nanoparticles synthesized via co-precipitation method.
    Kripal R; Gupta AK; Mishra SK; Srivastava RK; Pandey AC; Prakash SG
    Spectrochim Acta A Mol Biomol Spectrosc; 2010 Sep; 76(5):523-30. PubMed ID: 20452818
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Excitations, optical absorption spectra, and optical excitonic gaps of heterofullerenes. I. C60, C59N+, and C48N12: theory and experiment.
    Xie RH; Bryant GW; Sun G; Nicklaus MC; Heringer D; Frauenheim T; Manaa MR; Smith VH; Araki Y; Ito O
    J Chem Phys; 2004 Mar; 120(11):5133-47. PubMed ID: 15267383
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.