BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

412 related articles for article (PubMed ID: 21829858)

  • 1. A touch-and-go lipid wrapping technique in microfluidic channels for rapid fabrication of multifunctional envelope-type gene delivery nanodevices.
    Kitazoe K; Wang J; Kaji N; Okamoto Y; Tokeshi M; Kogure K; Harashima H; Baba Y
    Lab Chip; 2011 Oct; 11(19):3256-62. PubMed ID: 21829858
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of functionalized double-lamellar multifunctional envelope-type nanodevices using a microfluidic chip with a chaotic mixer array.
    Kitazoe K; Park YS; Kaji N; Okamoto Y; Tokeshi M; Kogure K; Harashima H; Baba Y
    PLoS One; 2012; 7(6):e39057. PubMed ID: 22723929
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On-chip fabrication of mutifunctional envelope-type nanodevices for gene delivery.
    Kuramoto H; Park YS; Kaji N; Tokeshi M; Kogure K; Shinohara Y; Harashima H; Baba Y
    Anal Bioanal Chem; 2008 Aug; 391(8):2729-33. PubMed ID: 18542934
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Soft lithographic patterning of supported lipid bilayers onto a surface and inside microfluidic channels.
    Kim P; Lee SE; Jung HS; Lee HY; Kawai T; Suh KY
    Lab Chip; 2006 Jan; 6(1):54-9. PubMed ID: 16372069
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a non-viral multifunctional envelope-type nano device by a novel lipid film hydration method.
    Kogure K; Moriguchi R; Sasaki K; Ueno M; Futaki S; Harashima H
    J Control Release; 2004 Aug; 98(2):317-23. PubMed ID: 15262422
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication and validation of a multi-channel type microfluidic chip for electrokinetic streaming potential devices.
    Chun MS; Shim MS; Choi NW
    Lab Chip; 2006 Feb; 6(2):302-9. PubMed ID: 16450042
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional improvement of an IRQ-PEG-MEND for delivering genes to the lung.
    Ishitsuka T; Akita H; Harashima H
    J Control Release; 2011 Aug; 154(1):77-83. PubMed ID: 21619903
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid prototyping of microfluidic systems using a PDMS/polymer tape composite.
    Kim J; Surapaneni R; Gale BK
    Lab Chip; 2009 May; 9(9):1290-3. PubMed ID: 19370251
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Significant and prolonged antisense effect of a multifunctional envelope-type nano device encapsulating antisense oligodeoxynucleotide.
    Nakamura Y; Kogure K; Yamada Y; Futaki S; Harashima H
    J Pharm Pharmacol; 2006 Apr; 58(4):431-7. PubMed ID: 16597360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of reversibly adhesive fluidic devices using magnetism.
    Rafat M; Raad DR; Rowat AC; Auguste DT
    Lab Chip; 2009 Oct; 9(20):3016-9. PubMed ID: 19789760
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrokinetic protein preconcentration using a simple glass/poly(dimethylsiloxane) microfluidic chip.
    Kim SM; Burns MA; Hasselbrink EF
    Anal Chem; 2006 Jul; 78(14):4779-85. PubMed ID: 16841895
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of microfluidic devices containing patterned microwell arrays.
    Henley WH; Dennis PJ; Ramsey JM
    Anal Chem; 2012 Feb; 84(3):1776-80. PubMed ID: 22242542
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glass etching to bridge micro- and nanofluidics.
    Xu BY; Yan XN; Zhang JD; Xu JJ; Chen HY
    Lab Chip; 2012 Jan; 12(2):381-6. PubMed ID: 22068964
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Patterning, integration and characterisation of polymer optical oxygen sensors for microfluidic devices.
    Nock V; Blaikie RJ; David T
    Lab Chip; 2008 Aug; 8(8):1300-7. PubMed ID: 18651072
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construction of a multifunctional envelope-type nano device by a SUV*-fusion method.
    Sasaki K; Kogure K; Chaki S; Kihira Y; Ueno M; Harashima H
    Int J Pharm; 2005 May; 296(1-2):142-50. PubMed ID: 15885466
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of lipid particles targeted via sugar-lipid conjugates as novel nuclear gene delivery system.
    Masuda T; Akita H; Nishio T; Niikura K; Kogure K; Ijiro K; Harashima H
    Biomaterials; 2008 Feb; 29(6):709-23. PubMed ID: 18001828
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Octaarginine-modified multifunctional envelope-type nano device for siRNA.
    Nakamura Y; Kogure K; Futaki S; Harashima H
    J Control Release; 2007 Jun; 119(3):360-7. PubMed ID: 17478000
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel PDMS cylindrical channels that generate coaxial flow, and application to fabrication of microfibers and particles.
    Kang E; Shin SJ; Lee KH; Lee SH
    Lab Chip; 2010 Jul; 10(14):1856-61. PubMed ID: 20454720
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A multifunctional envelope-type nano device for novel gene delivery of siRNA plasmids.
    Moriguchi R; Kogure K; Akita H; Futaki S; Miyagishi M; Taira K; Harashima H
    Int J Pharm; 2005 Sep; 301(1-2):277-85. PubMed ID: 16019173
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving in vivo hepatic transfection activity by controlling intracellular trafficking: the function of GALA and maltotriose.
    Akita H; Masuda T; Nishio T; Niikura K; Ijiro K; Harashima H
    Mol Pharm; 2011 Aug; 8(4):1436-42. PubMed ID: 21598999
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.