These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 21830037)
1. Occurrence of fluoride in arsenic-rich surface waters: a case study in the Pampa Plain, Argentina. Rosso JJ; Puntoriero ML; Troncoso JJ; Volpedo AV; Fernández Cirelli A Bull Environ Contam Toxicol; 2011 Oct; 87(4):409-13. PubMed ID: 21830037 [TBL] [Abstract][Full Text] [Related]
2. Geographic distribution of arsenic and trace metals in lotic ecosystems of the Pampa Plain, Argentina. Rosso JJ; Troncoso JJ; Fernández Cirelli A Bull Environ Contam Toxicol; 2011 Jan; 86(1):129-32. PubMed ID: 21153802 [TBL] [Abstract][Full Text] [Related]
3. Content and distribution of arsenic in soils, sediments and groundwater environments of the southern Pampa region, Argentina. Blanco Mdel C; Paoloni JD; Morrás HJ; Fiorentino CE; Sequeira M Environ Toxicol; 2006 Dec; 21(6):561-74. PubMed ID: 17091500 [TBL] [Abstract][Full Text] [Related]
4. Ground water arsenic contamination in West Bengal, India: a risk of sub-clinical toxicity in cattle as evident by correlation between arsenic exposure, excretion and deposition. Bera AK; Rana T; Das S; Bhattacharya D; Bandyopadhyay S; Pan D; De S; Samanta S; Chowdhury AN; Mondal TK; Das SK Toxicol Ind Health; 2010 Nov; 26(10):709-16. PubMed ID: 20639276 [TBL] [Abstract][Full Text] [Related]
5. Sources and controls for the mobility of arsenic in oxidizing groundwaters from loess-type sediments in arid/semi-arid dry climates - evidence from the Chaco-Pampean plain (Argentina). Nicolli HB; Bundschuh J; García JW; Falcón CM; Jean JS Water Res; 2010 Nov; 44(19):5589-604. PubMed ID: 21035830 [TBL] [Abstract][Full Text] [Related]
6. Arsenic contamination of natural waters in San Juan and La Pampa, Argentina. O'Reilly J; Watts MJ; Shaw RA; Marcilla AL; Ward NI Environ Geochem Health; 2010 Dec; 32(6):491-515. PubMed ID: 20480386 [TBL] [Abstract][Full Text] [Related]
7. Assessment of groundwater quality with respect to fluoride. Salve PR; Maurya A; Kumbhare PS; Ramteke DS; Wate SR Bull Environ Contam Toxicol; 2008 Sep; 81(3):289-93. PubMed ID: 18563282 [TBL] [Abstract][Full Text] [Related]
8. Environmental risk assessment of arsenic and fluoride in the Chaco Province, Argentina: research advances. Buchhamer EE; Blanes PS; Osicka RM; Giménez MC J Toxicol Environ Health A; 2012; 75(22-23):1437-50. PubMed ID: 23095162 [TBL] [Abstract][Full Text] [Related]
9. Fluoride in drinking water and dental fluorosis. Mandinic Z; Curcic M; Antonijevic B; Carevic M; Mandic J; Djukic-Cosic D; Lekic CP Sci Total Environ; 2010 Aug; 408(17):3507-12. PubMed ID: 20580811 [TBL] [Abstract][Full Text] [Related]
10. Sources of arsenic and fluoride in highly contaminated soils causing groundwater contamination in Punjab, Pakistan. Farooqi A; Masuda H; Siddiqui R; Naseem M Arch Environ Contam Toxicol; 2009 May; 56(4):693-706. PubMed ID: 18937006 [TBL] [Abstract][Full Text] [Related]
11. Mapping of arsenic content and distribution in groundwater in the southeast Pampa, Argentina. Paoloni JD; Sequeira ME; Fiorentino CE J Environ Health; 2005 Apr; 67(8):50-3. PubMed ID: 15856665 [TBL] [Abstract][Full Text] [Related]
12. Occurrence and treatment of arsenic in groundwater and soil in northern Mexico and southwestern USA. Camacho LM; Gutiérrez M; Alarcón-Herrera MT; Villalba Mde L; Deng S Chemosphere; 2011 Apr; 83(3):211-25. PubMed ID: 21216433 [TBL] [Abstract][Full Text] [Related]
13. Geochemical modeling of high fluoride concentration in groundwater of Pokhran area of Rajasthan, India. Singh CK; Rina K; Singh RP; Shashtri S; Kamal V; Mukherjee S Bull Environ Contam Toxicol; 2011 Feb; 86(2):152-8. PubMed ID: 21258778 [TBL] [Abstract][Full Text] [Related]
14. Arsenic speciation of geothermal waters in New Zealand. Lord G; Kim N; Ward NI J Environ Monit; 2012 Dec; 14(12):3192-201. PubMed ID: 23147530 [TBL] [Abstract][Full Text] [Related]
15. Health risks from large-scale water pollution: trends in Central Asia. Törnqvist R; Jarsjö J; Karimov B Environ Int; 2011 Feb; 37(2):435-42. PubMed ID: 21131050 [TBL] [Abstract][Full Text] [Related]
16. Co-occurrence of arsenic and fluoride in groundwater of semi-arid regions in Latin America: genesis, mobility and remediation. Alarcón-Herrera MT; Bundschuh J; Nath B; Nicolli HB; Gutierrez M; Reyes-Gomez VM; Nuñez D; Martín-Dominguez IR; Sracek O J Hazard Mater; 2013 Nov; 262():960-9. PubMed ID: 22920686 [TBL] [Abstract][Full Text] [Related]
17. Trophic transfer of arsenic and antimony in a freshwater ecosystem: a field study. Culioli JL; Fouquoire A; Calendini S; Mori C; Orsini A Aquat Toxicol; 2009 Oct; 94(4):286-93. PubMed ID: 19695721 [TBL] [Abstract][Full Text] [Related]
18. Increasing arsenic concentrations in runoff from 12 small forested catchments (Czech Republic, Central Europe): patterns and controls. Novak M; Erbanova L; Fottova D; Voldrichova P; Prechova E; Blaha V; Veselovsky F; Krachler M Sci Total Environ; 2010 Aug; 408(17):3614-22. PubMed ID: 20494405 [TBL] [Abstract][Full Text] [Related]
19. Validation of analysis of arsenic in water samples using Wagtech Digital Arsenator. Safarzadeh-Amiri A; Fowlie P; Kazi AI; Siraj S; Ahmed S; Akbor A Sci Total Environ; 2011 Jun; 409(13):2662-7. PubMed ID: 21497375 [TBL] [Abstract][Full Text] [Related]
20. Toxic fluoride and arsenic contaminated groundwater in the Lahore and Kasur districts, Punjab, Pakistan and possible contaminant sources. Farooqi A; Masuda H; Firdous N Environ Pollut; 2007 Feb; 145(3):839-49. PubMed ID: 16777300 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]