BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 2183021)

  • 1. Isolation of mutant Saccharomyces cerevisiae strains that survive without sphingolipids.
    Dickson RC; Wells GB; Schmidt A; Lester RL
    Mol Cell Biol; 1990 May; 10(5):2176-81. PubMed ID: 2183021
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mutant strains of Saccharomyces cerevisiae lacking sphingolipids synthesize novel inositol glycerophospholipids that mimic sphingolipid structures.
    Lester RL; Wells GB; Oxford G; Dickson RC
    J Biol Chem; 1993 Jan; 268(2):845-56. PubMed ID: 8419362
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A suppressor gene that enables Saccharomyces cerevisiae to grow without making sphingolipids encodes a protein that resembles an Escherichia coli fatty acyltransferase.
    Nagiec MM; Wells GB; Lester RL; Dickson RC
    J Biol Chem; 1993 Oct; 268(29):22156-63. PubMed ID: 8408076
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dominant suppressor mutation bypasses the sphingolipid requirement for growth of Saccharomyces cells at low pH: role of the CWP2 gene.
    Skrzypek M; Lester RL; Spielmann P; Zingg N; Shelling J; Dickson RC
    Curr Genet; 2000 Nov; 38(4):191-201. PubMed ID: 11126778
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Suppressors of the Ca(2+)-sensitive yeast mutant (csg2) identify genes involved in sphingolipid biosynthesis. Cloning and characterization of SCS1, a gene required for serine palmitoyltransferase activity.
    Zhao C; Beeler T; Dunn T
    J Biol Chem; 1994 Aug; 269(34):21480-8. PubMed ID: 8063782
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Very long-chain fatty acid-containing lipids rather than sphingolipids per se are required for raft association and stable surface transport of newly synthesized plasma membrane ATPase in yeast.
    Gaigg B; Toulmay A; Schneiter R
    J Biol Chem; 2006 Nov; 281(45):34135-45. PubMed ID: 16980694
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phenotypes of sphingolipid-dependent strains of Saccharomyces cerevisiae.
    Patton JL; Srinivasan B; Dickson RC; Lester RL
    J Bacteriol; 1992 Nov; 174(22):7180-4. PubMed ID: 1429441
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sphingolipid long-chain-base auxotrophs of Saccharomyces cerevisiae: genetics, physiology, and a method for their selection.
    Pinto WJ; Srinivasan B; Shepherd S; Schmidt A; Dickson RC; Lester RL
    J Bacteriol; 1992 Apr; 174(8):2565-74. PubMed ID: 1556075
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Syringomycin action gene SYR2 is essential for sphingolipid 4-hydroxylation in Saccharomyces cerevisiae.
    Grilley MM; Stock SD; Dickson RC; Lester RL; Takemoto JY
    J Biol Chem; 1998 May; 273(18):11062-8. PubMed ID: 9556590
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Syringomycin E inhibition of Saccharomyces cerevisiae: requirement for biosynthesis of sphingolipids with very-long-chain fatty acids and mannose- and phosphoinositol-containing head groups.
    Stock SD; Hama H; Radding JA; Young DA; Takemoto JY
    Antimicrob Agents Chemother; 2000 May; 44(5):1174-80. PubMed ID: 10770748
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Yeast sphingolipids: recent developments in understanding biosynthesis, regulation, and function.
    Cowart LA; Obeid LM
    Biochim Biophys Acta; 2007 Mar; 1771(3):421-31. PubMed ID: 16997623
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cloning and characterization of LCB1, a Saccharomyces gene required for biosynthesis of the long-chain base component of sphingolipids.
    Buede R; Rinker-Schaffer C; Pinto WJ; Lester RL; Dickson RC
    J Bacteriol; 1991 Jul; 173(14):4325-32. PubMed ID: 2066332
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydroxylation state of fatty acid and long-chain base moieties of sphingolipid determine the sensitivity to growth inhibition due to AUR1 repression in Saccharomyces cerevisiae.
    Tani M; Kuge O
    Biochem Biophys Res Commun; 2012 Jan; 417(2):673-8. PubMed ID: 22166213
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The isolation and characterization of a mutant strain of Saccharomyces cerevisiae that requires a long chain base for growth and for synthesis of phosphosphingolipids.
    Wells GB; Lester RL
    J Biol Chem; 1983 Sep; 258(17):10200-3. PubMed ID: 6350287
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ELO2 and ELO3, homologues of the Saccharomyces cerevisiae ELO1 gene, function in fatty acid elongation and are required for sphingolipid formation.
    Oh CS; Toke DA; Mandala S; Martin CE
    J Biol Chem; 1997 Jul; 272(28):17376-84. PubMed ID: 9211877
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolism and selected functions of sphingolipids in the yeast Saccharomyces cerevisiae.
    Dickson RC; Lester RL
    Biochim Biophys Acta; 1999 Jun; 1438(3):305-21. PubMed ID: 10366774
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Requirement of sphingolipid alpha-hydroxylation for fungicidal action of syringomycin E.
    Hama H; Young DA; Radding JA; Ma D; Tang J; Stock SD; Takemoto JY
    FEBS Lett; 2000 Jul; 478(1-2):26-8. PubMed ID: 10922463
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A mutation in sphingolipid synthesis suppresses defects in yeast ergosterol metabolism.
    Valachovic M; Wilcox LI; Sturley SL; Bard M
    Lipids; 2004 Aug; 39(8):747-52. PubMed ID: 15638242
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rescue of cell growth by sphingosine with disruption of lipid microdomain formation in Saccharomyces cerevisiae deficient in sphingolipid biosynthesis.
    Tani M; Kihara A; Igarashi Y
    Biochem J; 2006 Feb; 394(Pt 1):237-42. PubMed ID: 16225461
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functions and metabolism of sphingolipids in Saccharomyces cerevisiae.
    Dickson RC; Sumanasekera C; Lester RL
    Prog Lipid Res; 2006 Nov; 45(6):447-65. PubMed ID: 16730802
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.