BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 21830485)

  • 1. A synthetic garden of state of the art natural protein nanoarchitectures dispersed in nanofluids.
    Esmaeilzadeh P; Fakhroueian Z; Jahanshahi M; Chamani M; Zamanizadeh HR; Rasekh B
    J Biomed Nanotechnol; 2011 Jun; 7(3):433-40. PubMed ID: 21830485
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of the structure of alpha-lactalbumin protein nanotubes using optical spectroscopy.
    Tarhan O; Tarhan E; Harsa S
    J Dairy Res; 2014 Feb; 81(1):98-106. PubMed ID: 24351706
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New route for self-assembly of α-lactalbumin nanotubes and their use as templates to grow silver nanotubes.
    Fu WC; Opazo MA; Acuña SM; Toledo PG
    PLoS One; 2017; 12(4):e0175680. PubMed ID: 28403179
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hierarchical hollow hydroxyapatite microspheres: microwave-assisted rapid synthesis by using pyridoxal-5'-phosphate as a phosphorus source and application in drug delivery.
    Zhao XY; Zhu YJ; Qi C; Chen F; Lu BQ; Zhao J; Wu J
    Chem Asian J; 2013 Jun; 8(6):1313-20. PubMed ID: 23554329
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanotubular structures developed from whey-based α-lactalbumin fractions for food applications.
    Tarhan O; Harsa S
    Biotechnol Prog; 2014; 30(6):1301-10. PubMed ID: 25079253
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of pH, protein concentration and calcium ratio on the formation and structure of nanotubes from partially hydrolyzed bovine α-lactalbumin.
    Geng X; Kirkensgaard JJK; Arleth L; Otte J; Ipsen R
    Soft Matter; 2019 Jun; 15(24):4787-4796. PubMed ID: 31062808
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of cellulose-L-tyrosine-silica hybrid nanocomposites by sol-gel process for high performance applications.
    Ramesh S; Kim JH
    J Nanosci Nanotechnol; 2014 Oct; 14(10):7558-61. PubMed ID: 25942825
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nano-TiO2 induced secondary structural transition of silk fibroin studied by two-dimensional Fourier-transform infrared correlation spectroscopy and Raman spectroscopy.
    Feng XX; Guo YH; Chen JY; Zhang JC
    J Biomater Sci Polym Ed; 2007; 18(11):1443-56. PubMed ID: 17961326
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of one-dimensional SiC nanostructures from a glassy buckypaper.
    Ding M; Star A
    ACS Appl Mater Interfaces; 2013 Mar; 5(6):1928-36. PubMed ID: 23427809
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication and characterization of ZnO@CdS core-shell nanostructure using acetate precursors: XRD, FESEM, DRS, FTIR studies and effects of cadmium ion concentration on band gap.
    Habibi MH; Rahmati MH
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Dec; 133():13-8. PubMed ID: 24926644
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon nanotube-DNA nanoarchitectures and electronic functionality.
    Wang X; Liu F; Andavan GT; Jing X; Singh K; Yazdanpanah VR; Bruque N; Pandey RR; Lake R; Ozkan M; Wang KL; Ozkan CS
    Small; 2006 Nov; 2(11):1356-65. PubMed ID: 17192987
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure and binding ability of self-assembled α-lactalbumin protein nanotubular gels.
    Tarhan Ö; Hamaker BR; Campanella OH
    Biotechnol Prog; 2021 May; 37(3):e3127. PubMed ID: 33464699
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supercritical preparation of hexagonal gamma-alumina nanosheets and its electrocatalytic properties.
    Ma C; Chang Y; Ye W; Shang W; Wang C
    J Colloid Interface Sci; 2008 Jan; 317(1):148-54. PubMed ID: 17949735
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spectroscopic investigations of nanohydroxyapatite powders synthesized by conventional and ultrasonic coupled sol-gel routes.
    Gopi D; Govindaraju KM; Victor CA; Kavitha L; Rajendiran N
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Oct; 70(5):1243-5. PubMed ID: 18356096
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanostructures formed by cyclodextrin covered procainamide through supramolecular self assembly--spectral and molecular modeling study.
    Rajendiran N; Mohandoss T; Sankaranarayanan RK
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Feb; 136 Pt B():875-83. PubMed ID: 25459611
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein nanotubes as state-of-the-art nanocarriers: Synthesis methods, simulation and applications.
    Katouzian I; Jafari SM
    J Control Release; 2019 Jun; 303():302-318. PubMed ID: 31009647
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A simple route towards CuO nanowires and nanorods.
    Cao M; Wang Y; Guo C; Qi Y; Hu C; Wang E
    J Nanosci Nanotechnol; 2004 Sep; 4(7):824-8. PubMed ID: 15570966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D hybrid structures based on biomimetic membranes and Caryophyllus aromaticus - "green" synthesized nano-silver with improved bioperformances.
    Barbinta-Patrascu ME; Badea N; Bacalum M; Ungureanu C; Suica-Bunghez IR; Iordache SM; Pirvu C; Zgura I; Maraloiu VA
    Mater Sci Eng C Mater Biol Appl; 2019 Aug; 101():120-137. PubMed ID: 31029305
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploiting enzymatic (reversed) hydrolysis in directed self-assembly of peptide nanostructures.
    Das AK; Collins R; Ulijn RV
    Small; 2008 Feb; 4(2):279-87. PubMed ID: 18214877
    [TBL] [Abstract][Full Text] [Related]  

  • 20. D-penicillamine assisted hydrothermal synthesis of Bi2S3 nanoflowers and their electrochemical application.
    Zhang M; Chen DJ; Wang RZ; Feng JJ; Bai Z; Wang AJ
    Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):3980-5. PubMed ID: 23910304
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.