These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 21830715)

  • 1. Formation of tussocks by sedges: effects of hydroperiod and nutrients.
    Lawrence BA; Zedler JB
    Ecol Appl; 2011 Jul; 21(5):1745-59. PubMed ID: 21830715
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Comparison of ecological characteristics of Carex tussock under natural and artificial reco-very.].
    Qi Q; Liu XW; Tong SZ; Zhang DJ; Zhang MY; An Y; Wang XH
    Ying Yong Sheng Tai Xue Bao; 2019 Nov; 30(11):3707-3715. PubMed ID: 31833683
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scale-dependent inhibition drives regular tussock spacing in a freshwater marsh.
    van de Koppel J; Crain CM
    Am Nat; 2006 Nov; 168(5):E136-47. PubMed ID: 17080356
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Plant species diversity of
    Wang M; Li XL; Dong YM; Wang SZ; Liu B; Jiang M; Wang GD
    Ying Yong Sheng Tai Xue Bao; 2021 Jun; 32(6):2138-2146. PubMed ID: 34212620
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Greater seasonal carbon gain across a broad temperature range contributes to the invasive potential of Phalaris arundinacea (Poaceae; reed canary grass) over the native sedge Carex stricta (Cyperaceae).
    He Z; Bentley LP; Holaday AS
    Am J Bot; 2011 Jan; 98(1):20-30. PubMed ID: 21613081
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bulk leaf delta(18)O and delta(13)C reflect the intensity of intraspecific competition for water in a semi-arid tussock grassland.
    Ramírez DA; Querejeta JI; Bellot J
    Plant Cell Environ; 2009 Oct; 32(10):1346-56. PubMed ID: 19552668
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrological and microtopographic effects on community ecological characteristics of Carex schmidtii tussock wetland.
    Qi Q; Zhang D; Zhang M; Tong S; An Y; Wang X; Zhu G
    Sci Total Environ; 2021 Aug; 780():146630. PubMed ID: 34030303
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High nitrogen : phosphorus ratios reduce nutrient retention and second-year growth of wetland sedges.
    Güsewell S
    New Phytol; 2005 May; 166(2):537-50. PubMed ID: 15819916
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasticity of nitrogen allocation in the leaves of the invasive wetland grass, Phalaris arundinacea and co-occurring Carex species determines the photosynthetic sensitivity to nitrogen availability.
    Holaday AS; Schwilk DW; Waring EF; Guvvala H; Griffin CM; Lewis OM
    J Plant Physiol; 2015 Apr; 177():20-29. PubMed ID: 25659333
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Associations of soil bacterial diversity and function with plant diversity in
    Li Y; Shi C; Wei D; Ding J; Xu N; Jin L; Wang L
    Front Microbiol; 2023; 14():1142052. PubMed ID: 37089570
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Light field heterogeneity among tussock grasses: Theoretical considerations of light harvesting and seedling establishment in tussocks and uniform tiller distributions.
    Ryel RI; Caldwell MM; Beyschlag W
    Oecologia; 1994 Aug; 98(3-4):241-246. PubMed ID: 28313898
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of the spatial pattern of defoliation on regrowth of a tussock grass : II. Canopy gas exchange.
    Gold WG; Caldwell MM
    Oecologia; 1989 Dec; 81(4):437-442. PubMed ID: 28312634
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbon storage potential by four macrophytes as affected by planting diversity in a created wetland.
    Means MM; Ahn C; Korol AR; Williams LD
    J Environ Manage; 2016 Jan; 165():133-139. PubMed ID: 26431640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Connecting carbon and nitrogen storage in rural wetland soil to groundwater abstraction for urban water supply.
    Lewis DB; Feit SJ
    Glob Chang Biol; 2015 Apr; 21(4):1704-14. PubMed ID: 25394332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of a dominant macrophyte, Juncus effusus, on wetland plant species richness, diversity, and community composition.
    Ervin GN; Wetzel RG
    Oecologia; 2002 Feb; 130(4):626-636. PubMed ID: 28547266
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The ecological response of Carex lasiocarpa community in the Riparian Wetlands to the environmental gradient of water depth in Sanjiang Plain, Northeast China.
    Luan Z; Wang Z; Yan D; Liu G; Xu Y
    ScientificWorldJournal; 2013; 2013():402067. PubMed ID: 24065874
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ecological effects of low-level phosphorus additions on two plant communities in a neotropical freshwater wetland ecosystem.
    Daoust RJ; Childers DL
    Oecologia; 2004 Dec; 141(4):672-86. PubMed ID: 15365807
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of the spatial pattern of defoliation on regrowth of a tussock grass : III. Photosynthesis, canopy structure and light interception.
    Gold WG; Caldwell MM
    Oecologia; 1990 Jan; 82(1):12-17. PubMed ID: 28313131
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-nutrient vs. nitrogen-only effects on carbon sequestration in grassland soils.
    Fornara DA; Banin L; Crawley MJ
    Glob Chang Biol; 2013 Dec; 19(12):3848-57. PubMed ID: 23907927
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High growth temperatures and high soil nitrogen do not alter differences in CO
    Waring EF; Holaday AS
    Am J Bot; 2017 Jul; 104(7):999-1007. PubMed ID: 28743760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.