These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

350 related articles for article (PubMed ID: 21831320)

  • 21. Circuitry Linking the Catabolite Repression and Csr Global Regulatory Systems of Escherichia coli.
    Pannuri A; Vakulskas CA; Zere T; McGibbon LC; Edwards AN; Georgellis D; Babitzke P; Romeo T
    J Bacteriol; 2016 Nov; 198(21):3000-3015. PubMed ID: 27551019
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Impact of global transcriptional regulation by ArcA, ArcB, Cra, Crp, Cya, Fnr, and Mlc on glucose catabolism in Escherichia coli.
    Perrenoud A; Sauer U
    J Bacteriol; 2005 May; 187(9):3171-9. PubMed ID: 15838044
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The multifactorial influences of RpoS, Mlc and cAMP on ptsG expression under glucose-limited and anaerobic conditions.
    Seeto S; Notley-McRobb L; Ferenci T
    Res Microbiol; 2004 Apr; 155(3):211-5. PubMed ID: 15059634
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Engineering E. coli for simultaneous glucose-xylose utilization during methyl ketone production.
    Wang X; Goh EB; Beller HR
    Microb Cell Fact; 2018 Jan; 17(1):12. PubMed ID: 29374483
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Expression of the phosphotransferase system both mediates and is mediated by Mlc regulation in Escherichia coli.
    Plumbridge J
    Mol Microbiol; 1999 Jul; 33(2):260-73. PubMed ID: 10411743
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhanced production of lactate-based polyesters in Escherichia coli from a mixture of glucose and xylose by Mlc-mediated catabolite derepression.
    Kadoya R; Matsumoto K; Takisawa K; Ooi T; Taguchi S
    J Biosci Bioeng; 2018 Apr; 125(4):365-370. PubMed ID: 29329972
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Glucose consumption in carbohydrate mixtures by phosphotransferase-system mutants of Escherichia coli.
    Xia T; Sriram N; Lee SA; Altman R; Urbauer JL; Altman E; Eiteman MA
    Microbiology (Reading); 2017 Jun; 163(6):866-877. PubMed ID: 28640743
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Improving product yields on D-glucose in Escherichia coli via knockout of pgi and zwf and feeding of supplemental carbon sources.
    Shiue E; Brockman IM; Prather KL
    Biotechnol Bioeng; 2015 Mar; 112(3):579-87. PubMed ID: 25258165
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Experimental evolution reveals an effective avenue to release catabolite repression via mutations in XylR.
    Sievert C; Nieves LM; Panyon LA; Loeffler T; Morris C; Cartwright RA; Wang X
    Proc Natl Acad Sci U S A; 2017 Jul; 114(28):7349-7354. PubMed ID: 28655843
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Use of catabolite repression mutants for fermentation of sugar mixtures to ethanol.
    Nichols NN; Dien BS; Bothast RJ
    Appl Microbiol Biotechnol; 2001 Jul; 56(1-2):120-5. PubMed ID: 11499918
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Glucose repression of the Escherichia coli sdhCDAB operon, revisited: regulation by the CRP*cAMP complex.
    Nam TW; Park YH; Jeong HJ; Ryu S; Seok YJ
    Nucleic Acids Res; 2005; 33(21):6712-22. PubMed ID: 16314304
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A mutated PtsG, the glucose transporter, allows uptake of D-ribose.
    Oh H; Park Y; Park C
    J Biol Chem; 1999 May; 274(20):14006-11. PubMed ID: 10318813
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dual inducer signal recognition by an Mlc homologue.
    Bréchemier-Baey D; Pennetier C; Plumbridge J
    Microbiology (Reading); 2015 Aug; 161(8):1694-1706. PubMed ID: 26293172
    [TBL] [Abstract][Full Text] [Related]  

  • 34. NADPH-dependent pgi-gene knockout Escherichia coli metabolism producing shikimate on different carbon sources.
    Ahn J; Chung BK; Lee DY; Park M; Karimi IA; Jung JK; Lee H
    FEMS Microbiol Lett; 2011 Nov; 324(1):10-6. PubMed ID: 22092758
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Regulation of PTS gene expression by the homologous transcriptional regulators, Mlc and NagC, in Escherichia coli (or how two similar repressors can behave differently).
    Plumbridge J
    J Mol Microbiol Biotechnol; 2001 Jul; 3(3):371-80. PubMed ID: 11361067
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Metabolic regulation of Escherichia coli and its phoB and phoR genes knockout mutants under phosphate and nitrogen limitations as well as at acidic condition.
    Marzan LW; Shimizu K
    Microb Cell Fact; 2011 May; 10():39. PubMed ID: 21599905
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of cra gene knockout together with edd and iclR genes knockout on the metabolism in Escherichia coli.
    Sarkar D; Siddiquee KA; Araúzo-Bravo MJ; Oba T; Shimizu K
    Arch Microbiol; 2008 Nov; 190(5):559-71. PubMed ID: 18648770
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fermentation of sugar mixtures using Escherichia coli catabolite repression mutants engineered for production of L-lactic acid.
    Dien BS; Nichols NN; Bothast RJ
    J Ind Microbiol Biotechnol; 2002 Nov; 29(5):221-7. PubMed ID: 12407454
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Activation of glucose transport under oxidative stress in Escherichia coli.
    Rungrassamee W; Liu X; Pomposiello PJ
    Arch Microbiol; 2008 Jul; 190(1):41-9. PubMed ID: 18368388
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of iclR and arcA knockouts on biomass formation and metabolic fluxes in Escherichia coli K12 and its implications on understanding the metabolism of Escherichia coli BL21 (DE3).
    Waegeman H; Beauprez J; Moens H; Maertens J; De Mey M; Foulquié-Moreno MR; Heijnen JJ; Charlier D; Soetaert W
    BMC Microbiol; 2011 Apr; 11():70. PubMed ID: 21481254
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.