These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 21831379)

  • 1. Amputee Independent Prosthesis Properties--a new model for description and measurement.
    Major MJ; Twiste M; Kenney LP; Howard D
    J Biomech; 2011 Sep; 44(14):2572-5. PubMed ID: 21831379
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stance phase mechanical characterization of transtibial prostheses distal to the socket: a review.
    Major MJ; Kenney LP; Twiste M; Howard D
    J Rehabil Res Dev; 2012; 49(6):815-29. PubMed ID: 23299254
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling and simulation of muscle forces of trans-tibial amputee to study effect of prosthetic alignment.
    Fang L; Jia X; Wang R
    Clin Biomech (Bristol, Avon); 2007 Dec; 22(10):1125-31. PubMed ID: 17942203
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of prosthetic foot roll-over shape arc length on the gait of trans-tibial prosthesis users.
    Hansen AH; Meier MR; Sessoms PH; Childress DS
    Prosthet Orthot Int; 2006 Dec; 30(3):286-99. PubMed ID: 17162519
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A low-dimensional sagittal-plane forward-dynamic model for asymmetric gait and its application to study the gait of transtibial prosthesis users.
    Srinivasan S; Westervelt ER; Hansen AH
    J Biomech Eng; 2009 Mar; 131(3):031003. PubMed ID: 19154062
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative roll-over analysis of prosthetic feet.
    Curtze C; Hof AL; van Keeken HG; Halbertsma JP; Postema K; Otten B
    J Biomech; 2009 Aug; 42(11):1746-53. PubMed ID: 19446814
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of prosthetic ankle energy storage and return properties on muscle activity in below-knee amputee walking.
    Ventura JD; Klute GK; Neptune RR
    Gait Posture; 2011 Feb; 33(2):220-6. PubMed ID: 21145747
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of energy storage and return foot stiffness on walking mechanics and muscle activity in below-knee amputees.
    Fey NP; Klute GK; Neptune RR
    Clin Biomech (Bristol, Avon); 2011 Dec; 26(10):1025-32. PubMed ID: 21777999
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pressure characteristics at the stump/socket interface in transtibial amputees using an adaptive prosthetic foot.
    Wolf SI; Alimusaj M; Fradet L; Siegel J; Braatz F
    Clin Biomech (Bristol, Avon); 2009 Dec; 24(10):860-5. PubMed ID: 19744755
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Influence of wall thickness on the stress distribution within transtibial monolimb].
    Liu Z; Fan Y; Zhang M; Jiang W; Pu F; Chen J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2004 Aug; 21(4):562-5. PubMed ID: 15357432
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Dynamic loads at knee joint of trans-tibial amputee on different terrains].
    Jia X; Zhang M; Fan Y; Wang R
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Apr; 22(2):221-4. PubMed ID: 15884522
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of alignment on interface pressure for transtibial amputee during walking.
    Jia X; Suo S; Meng F; Wang R
    Disabil Rehabil Assist Technol; 2008 Nov; 3(6):339-43. PubMed ID: 19127605
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparative study of conventional and energy-storing prosthetic feet in high-functioning transfemoral amputees.
    Graham LE; Datta D; Heller B; Howitt J; Pros D
    Arch Phys Med Rehabil; 2007 Jun; 88(6):801-6. PubMed ID: 17532907
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Compensatory mechanism involving the knee joint of the intact limb during gait in unilateral below-knee amputees.
    Beyaert C; Grumillier C; Martinet N; Paysant J; André JM
    Gait Posture; 2008 Aug; 28(2):278-84. PubMed ID: 18295487
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical efficiency during gait of adults with transtibial amputation: a pilot study comparing the SACH, Seattle, and Golden-Ankle prosthetic feet.
    Prince F; Winter DA; Sjonnensen G; Powell C; Wheeldon RK
    J Rehabil Res Dev; 1998 Jun; 35(2):177-85. PubMed ID: 9651889
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Locomotion of the hemipelvectomy amputee.
    Iwakura H; Abe M; Fujinaga H; Kakurai S; Yano H
    Prosthet Orthot Int; 1979 Aug; 3(2):111-4. PubMed ID: 503792
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical properties of prosthetic limbs: adapting to the patient.
    Klute GK; Kallfelz CF; Czerniecki JM
    J Rehabil Res Dev; 2001; 38(3):299-307. PubMed ID: 11440261
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Compensatory mechanism involving the hip joint of the intact limb during gait in unilateral trans-tibial amputees.
    Grumillier C; Martinet N; Paysant J; André JM; Beyaert C
    J Biomech; 2008 Oct; 41(14):2926-31. PubMed ID: 18771768
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of mass and momentum of inertia alternation on individual muscle forces during swing phase of transtibial amputee gait.
    Dabiri Y; Najarian S; Eslami MR; Zahedi S; Moser D; Shirzad E; Allami M
    Kobe J Med Sci; 2010 Sep; 56(3):E92-7. PubMed ID: 21063155
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparative study of oxygen consumption for conventional and energy-storing prosthetic feet in transfemoral amputees.
    Graham LE; Datta D; Heller B; Howitt J
    Clin Rehabil; 2008; 22(10-11):896-901. PubMed ID: 18955421
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.