BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 21831575)

  • 1. Micromotion of cementless tibial baseplates under physiological loading conditions.
    Bhimji S; Meneghini RM
    J Arthroplasty; 2012 Apr; 27(4):648-54. PubMed ID: 21831575
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Micromotion of cementless tibial baseplates: keels with adjuvant pegs offer more stability than pegs alone.
    Bhimji S; Meneghini RM
    J Arthroplasty; 2014 Jul; 29(7):1503-6. PubMed ID: 24709524
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A mobile-bearing knee prosthesis can reduce strain at the proximal tibia.
    Bottlang M; Erne OK; Lacatusu E; Sommers MB; Kessler O
    Clin Orthop Relat Res; 2006 Jun; 447():105-11. PubMed ID: 16456313
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical stability of well-functioning tibial baseplates from postmortem-retrieved total knee arthroplasties.
    Rao AS; Engh JA; Engh GA; Parks NL
    J Arthroplasty; 2010 Apr; 25(3):481-5. PubMed ID: 19195833
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A parametric analysis of fixation post shape in tibial knee prostheses.
    Au AG; Liggins AB; Raso VJ; Amirfazli A
    Med Eng Phys; 2005 Mar; 27(2):123-34. PubMed ID: 15642508
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of bone-prosthesis interface micromotion for cementless tibial prosthesis fixation and the influence of loading conditions.
    Chong DY; Hansen UN; Amis AA
    J Biomech; 2010 Apr; 43(6):1074-80. PubMed ID: 20189576
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fixation response of two cementless tibial implants under static and fatigue compression loading.
    Dammak M; Shirazi-Adl A; Zukor DJ
    Technol Health Care; 2003; 11(4):245-52. PubMed ID: 14600335
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of tibial stem design on component micromotion in knee arthroplasty.
    Stern SH; Wills RD; Gilbert JL
    Clin Orthop Relat Res; 1997 Dec; (345):44-52. PubMed ID: 9418620
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Micromotion secondary to axial, torsional, and shear loads in two models of cementless tibial components.
    Kraemer WJ; Harrington IJ; Hearn TC
    J Arthroplasty; 1995 Apr; 10(2):227-35. PubMed ID: 7798106
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Initial Stability of Cemented vs Cementless Tibial Components Under Cyclic Load.
    Crook PD; Owen JR; Hess SR; Al-Humadi SM; Wayne JS; Jiranek WA
    J Arthroplasty; 2017 Aug; 32(8):2556-2562. PubMed ID: 28433426
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metal backing significantly decreases tibial strains in a medial unicompartmental knee arthroplasty model.
    Small SR; Berend ME; Ritter MA; Buckley CA; Rogge RD
    J Arthroplasty; 2011 Aug; 26(5):777-82. PubMed ID: 20870385
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A circumferentially flanged tibial tray minimizes bone-tray shear micromotion.
    Barker DS; Tanner KE; Ryd L
    Proc Inst Mech Eng H; 2005 Nov; 219(6):449-56. PubMed ID: 16312104
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparison in proximal tibial strain between metal-backed and all-polyethylene anatomic graduated component total knee arthroplasty tibial components.
    Small SR; Berend ME; Ritter MA; Buckley CA
    J Arthroplasty; 2010 Aug; 25(5):820-5. PubMed ID: 20638615
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of bone resection depth and malalignment on strain in the proximal tibia after total knee arthroplasty.
    Berend ME; Small SR; Ritter MA; Buckley CA
    J Arthroplasty; 2010 Feb; 25(2):314-8. PubMed ID: 19346099
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Anterior Spike Decreases Bone-Implant Micromotion in Cementless Tibial Baseplates for Total Knee Arthroplasty: A Biomechanical Study.
    Quevedo Gonzalez FJ; Lipman JD; Sculco PK; Sculco TP; De Martino I; Wright TM
    J Arthroplasty; 2024 May; 39(5):1323-1327. PubMed ID: 38000515
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tibial component fixation with cement: full- versus surface-cementation techniques.
    Peters CL; Craig MA; Mohr RA; Bachus KN
    Clin Orthop Relat Res; 2003 Apr; (409):158-68. PubMed ID: 12671498
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Micromotion in cemented rotating platform total knee arthroplasty: cemented tibial stem versus hybrid fixation.
    Luring C; Perlick L; Trepte C; Linhardt O; Perlick C; Plitz W; Grifka J
    Arch Orthop Trauma Surg; 2006 Jan; 126(1):45-8. PubMed ID: 16333631
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative Fixation and Subsidence Profiles of Cementless Unicompartmental Knee Arthroplasty Implants.
    Yildirim G; Gopalakrishnan A; Davignon RA; Parker JW; Chawla H; Pearle AD
    J Arthroplasty; 2016 Sep; 31(9):2019-24. PubMed ID: 27004680
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Femoral component loosening in high-flexion total knee replacement: an in vitro comparison of high-flexion versus conventional designs.
    Bollars P; Luyckx JP; Innocenti B; Labey L; Victor J; Bellemans J
    J Bone Joint Surg Br; 2011 Oct; 93(10):1355-61. PubMed ID: 21969434
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental validation of a finite element model of a human cadaveric tibia.
    Gray HA; Taddei F; Zavatsky AB; Cristofolini L; Gill HS
    J Biomech Eng; 2008 Jun; 130(3):031016. PubMed ID: 18532865
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.