These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 21832060)
1. Definition of membrane topology and identification of residues important for transport in subunit a of the vacuolar ATPase. Toei M; Toei S; Forgac M J Biol Chem; 2011 Oct; 286(40):35176-86. PubMed ID: 21832060 [TBL] [Abstract][Full Text] [Related]
2. TM2 but not TM4 of subunit c'' interacts with TM7 of subunit a of the yeast V-ATPase as defined by disulfide-mediated cross-linking. Wang Y; Inoue T; Forgac M J Biol Chem; 2004 Oct; 279(43):44628-38. PubMed ID: 15322078 [TBL] [Abstract][Full Text] [Related]
3. Analysis of the membrane topology of transmembrane segments in the C-terminal hydrophobic domain of the yeast vacuolar ATPase subunit a (Vph1p) by chemical modification. Wang Y; Toei M; Forgac M J Biol Chem; 2008 Jul; 283(30):20696-702. PubMed ID: 18508769 [TBL] [Abstract][Full Text] [Related]
4. Interacting helical surfaces of the transmembrane segments of subunits a and c' of the yeast V-ATPase defined by disulfide-mediated cross-linking. Kawasaki-Nishi S; Nishi T; Forgac M J Biol Chem; 2003 Oct; 278(43):41908-13. PubMed ID: 12917411 [TBL] [Abstract][Full Text] [Related]
5. Arg-735 of the 100-kDa subunit a of the yeast V-ATPase is essential for proton translocation. Kawasaki-Nishi S; Nishi T; Forgac M Proc Natl Acad Sci U S A; 2001 Oct; 98(22):12397-402. PubMed ID: 11592980 [TBL] [Abstract][Full Text] [Related]
6. Structural analysis of the N-terminal domain of subunit a of the yeast vacuolar ATPase (V-ATPase) using accessibility of single cysteine substitutions to chemical modification. Liberman R; Cotter K; Baleja JD; Forgac M J Biol Chem; 2013 Aug; 288(31):22798-808. PubMed ID: 23740254 [TBL] [Abstract][Full Text] [Related]
7. Evidence that there are two copies of subunit c" in V0 complexes in the vacuolar H+-ATPase. Gibson LC; Cadwallader G; Finbow ME Biochem J; 2002 Sep; 366(Pt 3):911-9. PubMed ID: 12038966 [TBL] [Abstract][Full Text] [Related]
8. Site-directed mutagenesis of the 100-kDa subunit (Vph1p) of the yeast vacuolar (H+)-ATPase. Leng XH; Manolson MF; Liu Q; Forgac M J Biol Chem; 1996 Sep; 271(37):22487-93. PubMed ID: 8798414 [TBL] [Abstract][Full Text] [Related]
9. The amino-terminal domain of the vacuolar proton-translocating ATPase a subunit controls targeting and in vivo dissociation, and the carboxyl-terminal domain affects coupling of proton transport and ATP hydrolysis. Kawasaki-Nishi S; Bowers K; Nishi T; Forgac M; Stevens TH J Biol Chem; 2001 Dec; 276(50):47411-20. PubMed ID: 11592965 [TBL] [Abstract][Full Text] [Related]
10. Arrangement of subunits in the proteolipid ring of the V-ATPase. Wang Y; Cipriano DJ; Forgac M J Biol Chem; 2007 Nov; 282(47):34058-65. PubMed ID: 17897940 [TBL] [Abstract][Full Text] [Related]
11. The first putative transmembrane segment of subunit c" (Vma16p) of the yeast V-ATPase is not necessary for function. Nishi T; Kawasaki-Nishi S; Forgac M J Biol Chem; 2003 Feb; 278(8):5821-7. PubMed ID: 12482875 [TBL] [Abstract][Full Text] [Related]
12. Function and subunit interactions of the N-terminal domain of subunit a (Vph1p) of the yeast V-ATPase. Qi J; Forgac M J Biol Chem; 2008 Jul; 283(28):19274-82. PubMed ID: 18492665 [TBL] [Abstract][Full Text] [Related]
13. Topology, glycosylation and conformational changes in the membrane domain of the vacuolar H+-ATPase a subunit. Kartner N; Yao Y; Bhargava A; Manolson MF J Cell Biochem; 2013 Jul; 114(7):1474-87. PubMed ID: 23296946 [TBL] [Abstract][Full Text] [Related]
14. Cysteine-mediated cross-linking indicates that subunit C of the V-ATPase is in close proximity to subunits E and G of the V1 domain and subunit a of the V0 domain. Inoue T; Forgac M J Biol Chem; 2005 Jul; 280(30):27896-903. PubMed ID: 15951435 [TBL] [Abstract][Full Text] [Related]
15. VMA11 and VMA16 encode second and third proteolipid subunits of the Saccharomyces cerevisiae vacuolar membrane H+-ATPase. Hirata R; Graham LA; Takatsuki A; Stevens TH; Anraku Y J Biol Chem; 1997 Feb; 272(8):4795-803. PubMed ID: 9030535 [TBL] [Abstract][Full Text] [Related]
16. A cation-π interaction in a transmembrane helix of vacuolar ATPase retains the proton-transporting arginine in a hydrophobic environment. Hohlweg W; Wagner GE; Hofbauer HF; Sarkleti F; Setz M; Gubensäk N; Lichtenegger S; Falsone SF; Wolinski H; Kosol S; Oostenbrink C; Kohlwein SD; Zangger K J Biol Chem; 2018 Dec; 293(49):18977-18988. PubMed ID: 30209131 [TBL] [Abstract][Full Text] [Related]
17. The first putative transmembrane helix of the 16 kDa proteolipid lines a pore in the Vo sector of the vacuolar H(+)-ATPase. Jones PC; Harrison MA; Kim YI; Finbow ME; Findlay JB Biochem J; 1995 Dec; 312 ( Pt 3)(Pt 3):739-47. PubMed ID: 8554514 [TBL] [Abstract][Full Text] [Related]
18. Helical interactions and membrane disposition of the 16-kDa proteolipid subunit of the vacuolar H(+)-ATPase analyzed by cysteine replacement mutagenesis. Harrison MA; Murray J; Powell B; Kim YI; Finbow ME; Findlay JB J Biol Chem; 1999 Sep; 274(36):25461-70. PubMed ID: 10464277 [TBL] [Abstract][Full Text] [Related]
19. Localization of subunits D, E, and G in the yeast V-ATPase complex using cysteine-mediated cross-linking to subunit B. Arata Y; Baleja JD; Forgac M Biochemistry; 2002 Sep; 41(37):11301-7. PubMed ID: 12220197 [TBL] [Abstract][Full Text] [Related]
20. Structure and localization of an essential transmembrane segment of the proton translocation channel of yeast H+-V-ATPase. Duarte AM; Wolfs CJ; van Nuland NA; Harrison MA; Findlay JB; van Mierlo CP; Hemminga MA Biochim Biophys Acta; 2007 Feb; 1768(2):218-27. PubMed ID: 16962559 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]