These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 21832060)
21. Identification of a domain in the V0 subunit d that is critical for coupling of the yeast vacuolar proton-translocating ATPase. Owegi MA; Pappas DL; Finch MW; Bilbo SA; Resendiz CA; Jacquemin LJ; Warrier A; Trombley JD; McCulloch KM; Margalef KL; Mertz MJ; Storms JM; Damin CA; Parra KJ J Biol Chem; 2006 Oct; 281(40):30001-14. PubMed ID: 16891312 [TBL] [Abstract][Full Text] [Related]
22. The fourth transmembrane domain of the Helicobacter pylori Na+/H+ antiporter NhaA faces a water-filled channel required for ion transport. Kuwabara N; Inoue H; Tsuboi Y; Nakamura N; Kanazawa H J Biol Chem; 2004 Sep; 279(39):40567-75. PubMed ID: 15263004 [TBL] [Abstract][Full Text] [Related]
23. Structural aspects of the gastric H,K ATPase. Shin JM; Besancon M; Bamberg K; Sachs G Ann N Y Acad Sci; 1997 Nov; 834():65-76. PubMed ID: 9405786 [TBL] [Abstract][Full Text] [Related]
24. Subunit structure, function, and arrangement in the yeast and coated vesicle V-ATPases. Inoue T; Wilkens S; Forgac M J Bioenerg Biomembr; 2003 Aug; 35(4):291-9. PubMed ID: 14635775 [TBL] [Abstract][Full Text] [Related]
25. Subunit H of the vacuolar (H+) ATPase inhibits ATP hydrolysis by the free V1 domain by interaction with the rotary subunit F. Jefferies KC; Forgac M J Biol Chem; 2008 Feb; 283(8):4512-9. PubMed ID: 18156183 [TBL] [Abstract][Full Text] [Related]
26. Structure and regulation of the vacuolar ATPases. Cipriano DJ; Wang Y; Bond S; Hinton A; Jefferies KC; Qi J; Forgac M Biochim Biophys Acta; 2008; 1777(7-8):599-604. PubMed ID: 18423392 [TBL] [Abstract][Full Text] [Related]
27. Aqueous access pathways in subunit a of rotary ATP synthase extend to both sides of the membrane. Angevine CM; Herold KA; Fillingame RH Proc Natl Acad Sci U S A; 2003 Nov; 100(23):13179-83. PubMed ID: 14595019 [TBL] [Abstract][Full Text] [Related]
28. Analysis of strains with mutations in six genes encoding subunits of the V-ATPase: eukaryotes differ in the composition of the V0 sector of the enzyme. Chavez C; Bowman EJ; Reidling JC; Haw KH; Bowman BJ J Biol Chem; 2006 Sep; 281(37):27052-62. PubMed ID: 16857684 [TBL] [Abstract][Full Text] [Related]
29. Membrane topology of a cysteine-less mutant of human P-glycoprotein. Loo TW; Clarke DM J Biol Chem; 1995 Jan; 270(2):843-8. PubMed ID: 7822320 [TBL] [Abstract][Full Text] [Related]
30. The 3.5-Å CryoEM Structure of Nanodisc-Reconstituted Yeast Vacuolar ATPase V Roh SH; Stam NJ; Hryc CF; Couoh-Cardel S; Pintilie G; Chiu W; Wilkens S Mol Cell; 2018 Mar; 69(6):993-1004.e3. PubMed ID: 29526695 [TBL] [Abstract][Full Text] [Related]
31. Incorporation of transmembrane peptides from the vacuolar H(+)-ATPase in phospholipid membranes: spin-label electron paramagnetic resonance and polarized infrared spectroscopy. Kóta Z; Páli T; Dixon N; Kee TP; Harrison MA; Findlay JB; Finbow ME; Marsh D Biochemistry; 2008 Mar; 47(12):3937-49. PubMed ID: 18307317 [TBL] [Abstract][Full Text] [Related]
32. Topological characterization of the c, c', and c" subunits of the vacuolar ATPase from the yeast Saccharomyces cerevisiae. Flannery AR; Graham LA; Stevens TH J Biol Chem; 2004 Sep; 279(38):39856-62. PubMed ID: 15252052 [TBL] [Abstract][Full Text] [Related]
33. Structure and properties of the clathrin-coated vesicle and yeast vacuolar V-ATPases. Forgac M J Bioenerg Biomembr; 1999 Feb; 31(1):57-65. PubMed ID: 10340849 [TBL] [Abstract][Full Text] [Related]
34. Segment TM7 from the cytoplasmic hemi-channel from VO-H+-V-ATPase includes a flexible region that has a potential role in proton translocation. Duarte AM; de Jong ER; Wechselberger R; van Mierlo CP; Hemminga MA Biochim Biophys Acta; 2007 Sep; 1768(9):2263-70. PubMed ID: 17573038 [TBL] [Abstract][Full Text] [Related]
35. A protein chemical approach to channel structure and function: the proton channel of the vacuolar H(+)-ATPase. Findlay JB; Harrison MA Novartis Found Symp; 2002; 245():207-18; discussion 218-22, 261-4. PubMed ID: 12027009 [TBL] [Abstract][Full Text] [Related]
36. Cysteine-directed cross-linking to subunit B suggests that subunit E forms part of the peripheral stalk of the vacuolar H+-ATPase. Arata Y; Baleja JD; Forgac M J Biol Chem; 2002 Feb; 277(5):3357-63. PubMed ID: 11724797 [TBL] [Abstract][Full Text] [Related]
37. Site-directed mutagenesis of the yeast V-ATPase A subunit. Liu Q; Leng XH; Newman PR; Vasilyeva E; Kane PM; Forgac M J Biol Chem; 1997 May; 272(18):11750-6. PubMed ID: 9115229 [TBL] [Abstract][Full Text] [Related]
38. Aqueous access pathways in ATP synthase subunit a. Reactivity of cysteine substituted into transmembrane helices 1, 3, and 5. Angevine CM; Herold KA; Vincent OD; Fillingame RH J Biol Chem; 2007 Mar; 282(12):9001-7. PubMed ID: 17234633 [TBL] [Abstract][Full Text] [Related]
39. Function of the COOH-terminal domain of Vph1p in activity and assembly of the yeast V-ATPase. Leng XH; Manolson MF; Forgac M J Biol Chem; 1998 Mar; 273(12):6717-23. PubMed ID: 9506970 [TBL] [Abstract][Full Text] [Related]
40. Transmembrane domain II of the Na+/proline transporter PutP of Escherichia coli forms part of a conformationally flexible, cytoplasmic exposed aqueous cavity within the membrane. Pirch T; Landmeier S; Jung H J Biol Chem; 2003 Oct; 278(44):42942-9. PubMed ID: 12923181 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]