These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
256 related articles for article (PubMed ID: 2183218)
41. Phagotrophy and two new structures in the malaria parasite Plasmodium berghei. RUDZINSKA MA; TRAGER W J Biophys Biochem Cytol; 1959 Aug; 6(1):103-12. PubMed ID: 13673055 [TBL] [Abstract][Full Text] [Related]
42. [Comparative ultrastructural study of the process of hemoglobin degradation by P. berghei (Vincke and Lips, 1948) as a function of the state of maturity of the host cell]. Slomianny C; Prensier G; Charet P J Protozool; 1985 Feb; 32(1):1-5. PubMed ID: 3886896 [TBL] [Abstract][Full Text] [Related]
43. Purification and characterization of a hemoglobin degrading aspartic protease from the malarial parasite Plasmodium vivax. Sharma A; Eapen A; Subbarao SK J Biochem; 2005 Jul; 138(1):71-8. PubMed ID: 16046450 [TBL] [Abstract][Full Text] [Related]
44. Identification of hemoglobin degradation products in Plasmodium falciparum. Kamchonwongpaisan S; Samoff E; Meshnick SR Mol Biochem Parasitol; 1997 Jun; 86(2):179-86. PubMed ID: 9200124 [TBL] [Abstract][Full Text] [Related]
46. A new model for hemoglobin ingestion and transport by the human malaria parasite Plasmodium falciparum. Lazarus MD; Schneider TG; Taraschi TF J Cell Sci; 2008 Jun; 121(11):1937-49. PubMed ID: 18477610 [TBL] [Abstract][Full Text] [Related]
50. Distribution and biochemical properties of an M1-family aminopeptidase in Plasmodium falciparum indicate a role in vacuolar hemoglobin catabolism. Ragheb D; Dalal S; Bompiani KM; Ray WK; Klemba M J Biol Chem; 2011 Aug; 286(31):27255-65. PubMed ID: 21659511 [TBL] [Abstract][Full Text] [Related]
51. Electron tomography characterization of hemoglobin uptake in Plasmodium chabaudi reveals a stage-dependent mechanism for food vacuole morphogenesis. Wendt C; Rachid R; de Souza W; Miranda K J Struct Biol; 2016 May; 194(2):171-9. PubMed ID: 26882843 [TBL] [Abstract][Full Text] [Related]
52. Three-dimensional reconstruction of the feeding process of the malaria parasite. Slomianny C Blood Cells; 1990; 16(2-3):369-78. PubMed ID: 2096983 [TBL] [Abstract][Full Text] [Related]
53. Hydrolysis of erythrocyte proteins by proteases of malaria parasites. Rosenthal PJ Curr Opin Hematol; 2002 Mar; 9(2):140-5. PubMed ID: 11844998 [TBL] [Abstract][Full Text] [Related]
54. Falcipains and other cysteine proteases of malaria parasites. Rosenthal PJ Adv Exp Med Biol; 2011; 712():30-48. PubMed ID: 21660657 [TBL] [Abstract][Full Text] [Related]
56. Proteases of malaria parasites: new targets for chemotherapy. Rosenthal PJ Emerg Infect Dis; 1998; 4(1):49-57. PubMed ID: 9452398 [TBL] [Abstract][Full Text] [Related]
57. Inhibition by chloroquine of a novel haem polymerase enzyme activity in malaria trophozoites. Slater AF; Cerami A Nature; 1992 Jan; 355(6356):167-9. PubMed ID: 1729651 [TBL] [Abstract][Full Text] [Related]
58. Inhibition of a Plasmodium vinckei cysteine proteinase cures murine malaria. Rosenthal PJ; Lee GK; Smith RE J Clin Invest; 1993 Mar; 91(3):1052-6. PubMed ID: 8450035 [TBL] [Abstract][Full Text] [Related]
59. Method for the separation of mitochondria and apicoplast from the malaria parasite Plasmodium falciparum. Hata M; Sato S; Kita K Parasitol Int; 2019 Apr; 69():99-102. PubMed ID: 30543864 [TBL] [Abstract][Full Text] [Related]
60. A Presenilin-like protease associated with Plasmodium falciparum micronemes is involved in erythrocyte invasion. Li X; Chen H; Oh SS; Chishti AH Mol Biochem Parasitol; 2008 Mar; 158(1):22-31. PubMed ID: 18160114 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]