These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 2183223)

  • 1. Molecular differences among neurons reveal an organization of human visual cortex.
    Hockfield S; Tootell RB; Zaremba S
    Proc Natl Acad Sci U S A; 1990 Apr; 87(8):3027-31. PubMed ID: 2183223
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antibody labeling of functional subdivisions in visual cortex: Cat-301 immunoreactivity in striate and extrastriate cortex of the macaque monkey.
    Deyoe EA; Hockfield S; Garren H; Van Essen DC
    Vis Neurosci; 1990 Jul; 5(1):67-81. PubMed ID: 1702988
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular and morphological changes in the cat lateral geniculate nucleus and visual cortex induced by visual deprivation are revealed by monoclonal antibodies Cat-304 and Cat-301.
    GuimarĂ£es A; Zaremba S; Hockfield S
    J Neurosci; 1990 Sep; 10(9):3014-24. PubMed ID: 1697900
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distribution of neurons projecting to the superior colliculus correlates with thick cytochrome oxidase stripes in macaque visual area V2.
    Abel PL; O'Brien BJ; Lia B; Olavarria JF
    J Comp Neurol; 1997 Jan; 377(3):313-23. PubMed ID: 8989648
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional anatomy of the second visual area (V2) in the macaque.
    Tootell RB; Hamilton SL
    J Neurosci; 1989 Aug; 9(8):2620-44. PubMed ID: 2769360
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Morphological Cell Types Projecting from V1 Layer 4B to V2 Thick and Thin Stripes.
    Yarch J; Larsen H; Chen M; Angelucci A
    J Neurosci; 2019 Sep; 39(38):7501-7512. PubMed ID: 31358652
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anatomical organization of the primary visual cortex (area 17) of the cat. A comparison with area 17 of the macaque monkey.
    Lund JS; Henry GH; MacQueen CL; Harvey AR
    J Comp Neurol; 1979 Apr; 184(4):599-618. PubMed ID: 106072
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Receptive fields and functional architecture of macaque V2.
    Levitt JB; Kiper DC; Movshon JA
    J Neurophysiol; 1994 Jun; 71(6):2517-42. PubMed ID: 7931532
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical imaging of functional organization of V1 and V2 in marmoset visual cortex.
    Roe AW; Fritsches K; Pettigrew JD
    Anat Rec A Discov Mol Cell Evol Biol; 2005 Dec; 287(2):1213-25. PubMed ID: 16235264
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The global pattern of cytochrome oxidase stripes in visual area V2 of the macaque monkey.
    Olavarria JF; Van Essen DC
    Cereb Cortex; 1997; 7(5):395-404. PubMed ID: 9261570
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anatomical demonstration of ocular segregation in the retinogeniculocortical pathway of the New World capuchin monkey (Cebus apella).
    Hess DT; Edwards MA
    J Comp Neurol; 1987 Oct; 264(3):409-20. PubMed ID: 2824572
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Laminar distribution of NMDA receptors in cat and monkey visual cortex visualized by [3H]-MK-801 binding.
    Rosier AM; Arckens L; Orban GA; Vandesande F
    J Comp Neurol; 1993 Sep; 335(3):369-80. PubMed ID: 7901247
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pale cytochrome oxidase stripes in V2 receive the richest projection from macaque striate cortex.
    Sincich LC; Horton JC
    J Comp Neurol; 2002 May; 447(1):18-33. PubMed ID: 11967892
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cytochrome oxidase in the human visual cortex: distribution in the developing and the adult brain.
    Wong-Riley MT; Hevner RF; Cutlan R; Earnest M; Egan R; Frost J; Nguyen T
    Vis Neurosci; 1993; 10(1):41-58. PubMed ID: 8381019
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monoclonal antibody that identifies subsets of neurones in the central visual system of monkey and cat.
    Hendry SH; Hockfield S; Jones EG; McKay R
    Nature; 1984 Jan 19-25; 307(5948):267-9. PubMed ID: 6694727
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Subdivisions of the visual system labeled with the Cat-301 antibody in tree shrews.
    Jain N; Preuss TM; Kaas JH
    Vis Neurosci; 1994; 11(4):731-41. PubMed ID: 7918223
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cytochrome-oxidase blobs in cat primary visual cortex.
    Murphy KM; Jones DG; Van Sluyters RC
    J Neurosci; 1995 Jun; 15(6):4196-208. PubMed ID: 7790905
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mapping striate and extrastriate visual areas in human cerebral cortex.
    DeYoe EA; Carman GJ; Bandettini P; Glickman S; Wieser J; Cox R; Miller D; Neitz J
    Proc Natl Acad Sci U S A; 1996 Mar; 93(6):2382-6. PubMed ID: 8637882
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple processing streams in occipitotemporal visual cortex.
    DeYoe EA; Felleman DJ; Van Essen DC; McClendon E
    Nature; 1994 Sep; 371(6493):151-4. PubMed ID: 8072543
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Morphological analysis of the formation of cluster organization of neurons, forming the corticocortical connections in the cat visual cortex in early postnatal ontogenesis].
    Makarov FN; Markova LA; Granstrem EE
    Morfologiia; 2001; 120(6):13-5. PubMed ID: 12016757
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.