These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 21832307)

  • 1. Understanding the chemical vapor deposition of diamond: recent progress.
    Butler JE; Mankelevich YA; Cheesman A; Ma J; Ashfold MN
    J Phys Condens Matter; 2009 Sep; 21(36):364201. PubMed ID: 21832307
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microwave Plasma-Activated Chemical Vapor Deposition of Nitrogen-Doped Diamond. II: CH
    Truscott BS; Kelly MW; Potter KJ; Ashfold MN; Mankelevich YA
    J Phys Chem A; 2016 Nov; 120(43):8537-8549. PubMed ID: 27718565
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring the plasma chemistry in microwave chemical vapor deposition of diamond from C/H/O gas mixtures.
    Kelly MW; Richley JC; Western CM; Ashfold MN; Mankelevich YA
    J Phys Chem A; 2012 Sep; 116(38):9431-46. PubMed ID: 22924542
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microwave engineering of plasma-assisted CVD reactors for diamond deposition.
    Silva F; Hassouni K; Bonnin X; Gicquel A
    J Phys Condens Matter; 2009 Sep; 21(36):364202. PubMed ID: 21832308
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Examination of the bone-metal interface of titanium implants coated by the microwave plasma chemical vapor deposition method.
    Rupprecht S; Bloch A; Rosiwal S; Neukam FW; Wiltfang J
    Int J Oral Maxillofac Implants; 2002; 17(6):778-85. PubMed ID: 12507236
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Overgrowth of Single Crystal Diamond Using Defect-Selective Etching and Epitaxy Technique in Chemical Vapor Deposition.
    Lee J; Kwak T; Yoo G; Kim S; Nam O
    J Nanosci Nanotechnol; 2021 Aug; 21(8):4412-4417. PubMed ID: 33714336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Orthopedic nano diamond coatings: control of surface properties and their impact on osteoblast adhesion and proliferation.
    Yang L; Sheldon BW; Webster TJ
    J Biomed Mater Res A; 2009 Nov; 91(2):548-56. PubMed ID: 18985788
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tailoring nanocrystalline diamond coated on titanium for osteoblast adhesion.
    Pareta R; Yang L; Kothari A; Sirinrath S; Xiao X; Sheldon BW; Webster TJ
    J Biomed Mater Res A; 2010 Oct; 95(1):129-36. PubMed ID: 20540097
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical emission from microwave activated C/H/O gas mixtures for diamond chemical vapor deposition.
    Richley JC; Kelly MW; Ashfold MN; Mankelevich YA
    J Phys Chem A; 2012 Sep; 116(38):9447-58. PubMed ID: 22900736
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microwave Plasma-Activated Chemical Vapor Deposition of Nitrogen-Doped Diamond. I. N2/H2 and NH3/H2 Plasmas.
    Truscott BS; Kelly MW; Potter KJ; Johnson M; Ashfold MN; Mankelevich YA
    J Phys Chem A; 2015 Dec; 119(52):12962-76. PubMed ID: 26593853
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel Diamond Films Synthesis Strategy: Methanol and Argon Atmosphere by Microwave Plasma CVD Method Without Hydrogen.
    Yang L; Jiang C; Guo S; Zhang L; Gao J; Peng J; Hu T; Wang L
    Nanoscale Res Lett; 2016 Dec; 11(1):415. PubMed ID: 27644241
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Very high growth rate chemical vapor deposition of single-crystal diamond.
    Yan CS; Vohra YK; Mao HK; Hemley RJ
    Proc Natl Acad Sci U S A; 2002 Oct; 99(20):12523-5. PubMed ID: 16578879
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of carbon concentration on the optical properties of nanocrystalline diamond films deposited by hot-filament chemical vapor deposition method.
    Wang L; Liu J; Ren L; Su Q; Shi W; Xia Y
    J Nanosci Nanotechnol; 2008 May; 8(5):2534-9. PubMed ID: 18572679
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spectroscopic and modeling investigations of the gas-phase chemistry and composition in microwave plasma activated B2H6/Ar/H2 mixtures.
    Ma J; Richley JC; Davies DR; Cheesman A; Ashfold MN; Mankelevich YA
    J Phys Chem A; 2010 Feb; 114(7):2447-63. PubMed ID: 20121057
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Optical Spectroscopy for High-Pressure Microwave Plasma Chemical Vapor Deposition of Diamond Films].
    Cao W; Ma ZB
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Nov; 35(11):3007-11. PubMed ID: 26978897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of surface species in chemical vapor deposited carbon nanotubes.
    Lysaght AC; Chiu WK
    Nanotechnology; 2009 Mar; 20(11):115605. PubMed ID: 19420445
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determining the microwave coupling and operational efficiencies of a microwave plasma assisted chemical vapor deposition reactor under high pressure diamond synthesis operating conditions.
    Nad S; Gu Y; Asmussen J
    Rev Sci Instrum; 2015 Jul; 86(7):074701. PubMed ID: 26233399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microcontact printing of monodiamond nanoparticles: an effective route to patterned diamond structure fabrication.
    Zhuang H; Song B; Staedler T; Jiang X
    Langmuir; 2011 Oct; 27(19):11981-9. PubMed ID: 21866927
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Properties, synthesis, and growth mechanisms of carbon nanotubes with special focus on thermal chemical vapor deposition.
    Nessim GD
    Nanoscale; 2010 Aug; 2(8):1306-23. PubMed ID: 20820718
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Homoepitaxy Growth of Single Crystal Diamond under 300 torr Pressure in the MPCVD System.
    Wang X; Duan P; Cao Z; Liu C; Wang D; Peng Y; Hu X
    Materials (Basel); 2019 Nov; 12(23):. PubMed ID: 31795291
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.